首页 > TAG信息列表 > cdots
复旦高等代数I(22级)每周一题
本学期的高等代数每周一题活动计划从第2教学周开始,到第15教学周结束,每周的周末公布1道思考题(共15道,思考题一般与下周授课内容密切相关),供大家思考和解答。每周一题将通过“高等代数官方博客”(以博文的形式)和“22级高等代数在线课群”(以课群话题的形式)这两个渠道同时发布。有兴趣的复旦大学2021--2022学年第二学期(21级)高等代数II期末考试第七大题解答
七、(10分) 证明: 存在 $n$ 阶实方阵 $A$, 使得 $$\sin A=\begin{pmatrix} \dfrac{1}{2} & \dfrac{1}{4} & \cdots & \cdots & \dfrac{1}{2^n} \\[2mm] & \dfrac{1}{2} & \dfrac{1}{4} & \cdots & \dfrac{1}{2^{n-1}} \\ & & \dd统计学习方法学习笔记-03-k近邻法
首先叙述\(k\)近邻算法,然后讨论\(k\)近邻模型及三个基本要素,最后讲述\(k\)近邻法的一个实现方法,\(kd\)树,介绍构造和搜索\(kd\)树的算法。 k近邻算法 输入:训练数据集\(T = \{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\}\),其中,\(x_i \in \mathcal{X} \subseteq R^n\)为实例的特征向量,\(最小表示法
以下内容只要来自 OI Wiki 定义 最小表示法是用于解决字符串最小表示问题的方法。 字符串的最小表示 循环同构 当字符串S中可以选定一个位置i满足 \[S[i\cdots n]+S[1\cdots i-1]=T \]则成S与T循环同构 例如:1234的循环同构为:2341 3412 4123 最小表示 字符串S的最小表示为与S循Matrix-Tree Theorem
简介 矩阵树定理用来求无向图生成树个数,或者有向图指定根的内向树、外箱树个数。 这东西大概是 useless,但是毕竟正式比赛考过(联合省选 2020,sto wzj52501 orz),所以还是学一学。 全文临摹 OI-Wiki。 无向图 对于一张无向图 \(G\),定义其度数矩阵 \(D\): \[D_{ij}=\begin{cases}\deg(i),arc145
\(\textbf{A.}\) 当 \(n = 2\) 时有解当且仅当 \(S _ 1 = S _ 2\). 下设 \(n \geq 3\). 设若干次操作 \(S\) 得到是回文串 \(T\). 则 \(T _ 1 \in \{ \texttt{A} , S _ 1 \}\), \(T _ n \in \{ \texttt{B}, S _ n \}\). 而 \(T _ 1 = T _ n\). 故 \((S _ 1, S _ n) \neq矩阵的运算
目录矩阵的加法数与矩阵相乘矩阵与矩阵相乘方阵的幂运算方阵的多项式线性方程的矩阵表示矩阵的转置对称矩阵、反对称矩阵矩阵的逆 矩阵的加法 定义: 设 \(A=(a_{ij})、B=(b_{ij})\) 均为 \(m\times n\) 矩阵,将它们的对应位置元素相加得到的 \(m\times n\) 矩阵,称为 矩阵 \(A\) 与OI与线性代数
OI与线性代数 特别鸣谢 本博客\(50\%\)以上贺自本校高二巨佬lwlaymh 这是他的博客:https://lwlaymh.github.io 另外有\(15\%\)左右贺自洛谷题解,CSDN或知乎 仅为个人学习所用 高中向量基础 向量 仅含一列的矩阵称为列向量,或简称向量. 包含两个元素的向量如下所示: \[\overrightar卡特兰数学习笔记
卡特兰数(Catalan 数)学习笔记 一、引入 问题 1 由 \(n\) 个 \(+1\) 和 \(n\) 个 \(-1\) 组成的 \(2n\) 项序列 \(a_1,a_2,\cdots,a_{2n}\),求有多少种方案满足其部分和 \(a_1+a_2+\cdots+a_k \ge 0\ (k=1,2,\cdots,2n)\)。 分析 设满足条件的方案数(即答案)为 \(C_n\),不满足条件的方案P8344 题解
### 前言 题目传送门 \(\color{red}{see}\space \color{green}{in}\space \color{blue}{my}\space \color{purple}{blog}\) 这题作为本次比赛的 T1,难度感觉还行,算是一道结论题。 已经尽量讲得简单一些,没有用复杂的求和符号。 思路 很容易想到贪心策略,如下。 第 \(1\) 次放 \((z-1)港队系列算法、数据结构
写在前面 这两个东西其实并没有什么联系,但是因为都是由 @dd_d 首创的,所以写在一起。 Update:不想新开博客了,所以以后 dd_d 有什么新发明就直接在这里更新了。 港队线段树 这是一种高效且简便好写的优秀线段树( 由香港队长发明的 ),拥有良好的均摊复杂度。 在同时需要记录多个标最优性条件
非线性规划的最优解所满足的必要条件和充分条件(仅包含定理) 注意:文中很多地方的变量其实是矢量,比如方向 \(d\) 和梯度,为了方便写都没有写粗体。 一、无约束问题的最优性条件 定理 7.1.1 (其它定理证明需要的基础定理) 设函数 \(f(x)\) 在点 \(\bar{x}\) 处可微,如果存在方向 \({d【数论】组合数学学习笔记
蒟蒻的组合数学实在是太弱了,所以在初赛之前赶紧来复习一下,大部分内容由 \(OI-Wiki\) 整合而来。 普及知识点标 \(J\),提高知识点标 \(S\) 加法原理&乘法原理(\(J\)) 加法原理 假设完成一项任务有 \(n\) 种方案,每种方案的办法数目为 \(a_i\),则完成这项任务的总方法数为 \(a_1+a_2+\cdo[学习笔记] Berlekamp-Massey 算法
都 2202 年了,现代 OIer 早该会会了!参考了 此博客。 引入 Berlekamp-Massey 算法,又称为 BM 算法,其可以在 \(O(n^2)\) 时间内求解一个长度为 \(n\) 的数列的最短线性递推式。 在当今 OI 界,尚没有很多 BM 算法的应用,但在一些输入的数很少的题目中,BM 能够成为发掘题目性质(找规律)的一大大学数学杂志问题征解栏目 — 问题 4 的多种证法
大学数学杂志问题征解栏目 — 问题 4 (供题者: 谢启鸿、厉茗) 设 $n$ 阶复方阵 $A$ 满足: 对任意的正整数 $k$, $$|A^k+I_n|=1.$$ 证明: $A$ 是幂零阵. 证法一 (代数证法, 由湖南第一师范学院 2018 级本科生伍诗颖同学给出) 设 $A$ 的特征值为 $\lambda_1,\lambda_2,\cdots,\lFFT学习笔记
-1. 前置知识 基础的复数知识。 0. 什么是多项式乘法 众所周知,多项式本质是一种特殊的函数,可以表示为自变量的若干次幂之和,即 \[F(x)=\sum_{i=0}c_i\cdot x^i \]其中 \(c_i\) 被称为 \(x^i\) 的系数。 已知 \(F,G\) 是两个多项式函数,考虑定义一个新的函数 \(H(x)=F(x)G(x)\)。我们一文看懂线性回归和非线性回归
一文看懂线性回归和非线性回归 1. 非线性回归 2. 线性回归 3. 总结1. 非线性回归我们首先来看维基百科中对于非线性回归的定义:In statistics, nonlinear regression is a form of regression analysis in whic子空间
一、子空间的基 1、相关概念定义 若 \(S=\left\{ u_1,u_2,\cdots,u_m \right \}\) 是向量空间 \(V\) 的向量子集合,则 \(u_1,u_2,\cdots,u_m\) 的所有线性组合的集合 \(W\) 称为由 \(u_1,u_2,\cdots,u_m\) 张成的子空间,定义为 W=Span{u1,u2,⋯,um}={u:u=a1u1+a2u2+⋯+amum} 张成子任意长度循环卷积&单位根反演 学习笔记
今天听 \(\texttt{m}\color{red}{\texttt{yee}}\) 嘴的,赶紧来补个学习笔记。 PS:FFT 本质是长度为 \(2^k\) 的循环卷积。 单位根反演 反演本质: \[\frac1n\sum_{i=0}^{n-1}\omega_{n}^{ai}=[n|a] \]证明: 如果 \(n|i\),那么显然可以将 \(a\) 拆为若干个 \(\omega_n^n\),之后式子只剩下「学习笔记」博弈论
一. NIM 游戏 \(n\) 堆物品,每堆有 \(a_i\) 个,两个玩家轮流取走任意一堆的任意个物品,但不能不取。 取走最后一个物品的人获胜。 例如,如果现在有 \(n=3\) 堆物品,而每堆分别有 \(2,5,4\) 个,那么可以取走第 \(1\) 堆中的 \(2\) 个物品,局面就变成了 \(0,5,4\);或者也可以取走第 \(2\) 堆数论 · 幂函数求导
前言 TC 讲课笔记。 正文 定义一个幂函数:\(f(x)=a_1x^{b_1} + a_2x^{b_2} + \cdots + a_nx^{b_n} +C\)。(\(C\) 为常数。) 导数:反映一个函数的变化快慢。 对于一个一次函数: \(f(x)=kx+b\),那么它的导数就是 \(k\)——\(k\) 反应了这条直线上的点的变化快慢,\(k\) 越大,\(y\) 值的变化机器学习数学基础-4-线性代数基础
线性代数基础 行列式 二元线性方程组的求解: \[\begin{cases} a_{11}x_1+a_{12}x_2=b_1 \\ a_{21}x_1+a_{22}x_2=b_2 \end{cases} \]当 \(a_{11}a_{22}-a_{12}a_{21}\not ={0}\) 时方程组由唯一解 二阶行列式: 将系数提取并记为:\(D =\begin{vmatrix} a_{11} & a_{12} \\ a_{不等式专项
1. 重要不等式 \(a^2+b^2\ge 2ab\) 2. 基本不等式 \(a\ge0,b\ge0,\dfrac{a+b}{2}\ge\sqrt{ab}\) 3. 均值不等式 \(\dfrac{2}{\frac1a+\frac1b}\le\sqrt{ab}\le\dfrac{a+b}{2}\le\sqrt{\dfrac{a^2+b^2}{2}}\) 当且仅当 \(a=b\) 时等号成立。 拓展: \(\text{调和均值:}H_{n}=\dfrac{Forster预积分论文On-Manifold Preintegration for Real-Time Visual-Inertial Odometry公式推导
公式推导 根据等式(10) \[R\ Exp(\phi)\ R^{T} = exp(R\phi^{\hat{}}R^{T}) = Exp(R\phi) \]推导等式(11) \[\begin{align*} Exp(\phi)R &= RR^{T}Exp(\phi)R \\ &= R(R^{T}Exp(\phi)R) \\ &= RExp(R^{T}\phi) \end{align*} \]等式(35)部分推导 \[\prod_{k=i}[CF1699C]The Third Problem
做题时间:2022.7.12 \(【题目描述】\) 给定一个长度为 \(N(N\leq 10^5)\) 的排列 \(a_i\) ,其中的数包括 \([0,n-1]\) ,求出有多少个排列 \(b_i\) 满足对于 \(\forall l,r,1\leq l\leq r\leq N\) ,满足: \[\operatorname{MEX}([a_l,a_{l+1},\ldots,a_r])=\operatorname{MEX}([b_l,b_{l+