首页 > TAG信息列表 > Treap
Treap
因为说太多遍了,所以打算直接写下来。 OI 中常用的平衡树有很多,但是论码量,一般大家也只会选 splay 或者 treap,但是这两个平衡树经常被说常数很大。 splay 的常数主要在维护它的结构上,信息合并上的常数还不错,也没啥好说的,这里就不提了。 这里说说 treap。 很多人说非旋 treap 常数很莞中 2022暑假训练题02:平衡树
FHQ-Treap 此文章所有代码中的平衡树均为 FHQ-Treap。 FHQ-treap 即非旋Treap,是一种短小精悍,功能丰富的平衡树。 据说它的效率介于 Treap 和 Splay 之间(可能是我的FHQ常数比较小,跑得比我的Treap还快)。 它可以实现 Splay 可以实现的所有功能,包括平衡树的基本操作和区间翻转操作。Fhq-Treap 模板
namespace Fhq_Treap { int ch[N][3], siz[N], val[N], cnt, rnd[N]; inline void update(int x); inline int newnode(int x); inline int Kth(int now, int k); inline void split(int now, int k, int &x, int &y); inline int merge(int A, int B); inline voiTreap平衡树
1.1 treap随机生成优先值 令以优先值为小根堆heap 其关键值为二叉搜索树tree 二叉搜索树满足性质: 节点p的左子树内所有的关键值都小于等于p的关键值, 节点p的右子树内所有的关键值都大于p的关键值。 二叉搜索树可以方便地查到节点p的排名,以及查排名为k的节点编号POJ3580SuperMemo(无旋treap-平衡树的区间操作)
题目传送门:http://poj.org/problem?id=3580 题意:有一个序列,有6种操作: ADD x y D:将x-y区间内的值全部加D,例如,将区间{1, 2, 3, 4, 5} 2-4 全部+1 得到 {1, 3, 4, 5, 5} REVERSE x y: 将x-y区间内的值全部翻转. 例如,翻转 区间 2-4,{1, 2, 3, 4, 5} 得到 {1, 4, 3, 2, 5} REVOLVE x洛谷P3369 【模板】普通平衡树(无旋treap数组版)
题目传送门:https://www.luogu.com.cn/problem/P3369 模板: 1 #include<cstdio> 2 #include<cstring> 3 #include<cstdlib> 4 #include<iostream> 5 using namespace std; 6 const int MAXN = 100005; 7 const int MOD = 2147483647; 8P1600 天天爱跑步 题解 Treap启发式合并
仔细看了题解区里面好像平衡树的解法写的不太清楚,网上资料更是寥寥无几,经过自己的摸索之后,我尽量写一篇清楚的题解。 统一变量 设路径 \(i\) 的起点和终点为 \(s_i\) 和 \(t_i\), 长度为 \(dis_i\),起点和终点的lca为 \(lc_i\). 节点 \(i\) 深度为 \(d_i\). 推柿子 像其他题解所说Treap
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 5; const int INF = 1e9 + 7; int R,node,ls[N],rs[N],val[N],rd[N],sz[N],n; void push(int x){sz[x] = sz[ls[x]] + sz[rs[x]] + 1 ;} void spl(int p,int v,int &x,int &y){ if(!【模板】有旋Treap
\(update\) \(at\) \(2022.6.16\) 修改了些晦涩难懂的地方。 调了一周,今天总算调出来了。 概述: $ Treap = Tree + Heap $,其既有二叉查找树 \(BST\) 的性质,又有堆 \(Heap\) 的性质,于是有能维护排名,有能保证深度在 \(Θ(logN)\) 的量级。 BST: 即二叉查找树,满足保证根左侧子树的所有平衡树——旋转treap和WBLT
fhq_treap 和 Splay 之外的平衡树的代码是不可能写的。仅供学术研究,所以只有口胡,没有代码。 旋转treap 学过 fhq_treap 的都知道 treap 是啥吧( 但是 treap 也可以用旋转来维护。 插入操作: 这是显然的,找到位置插入以后,把结点一路转上去,直到父亲结点的 key 值小于当前结点的 keytreap(小根堆)模板
总结教训 对于treap使用小根堆性质,一定要特判左右子树是否存在,因为空节点的优先级为0,是最高的,不特判会出错我就这么错了,so 一定要特判!一定要特判!一定要特判!重要的事情说三遍 本文代码根据P3369 【模板】普通平衡树 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)写的 模板,有注释:Treap
定义 Binary Search Tree + Heap 用在红黑树、B+树,AVL,Splay等地方 保证在O(logn)内的查询 普通Treap方法类 插入数值 x。 删除数值 x(若有多个相同的数,应只删除一个)。 查询数值 x 的排名(若有多个相同的数,应输出最小的排名)。 查询排名为 x 的数值。 求数值 x 的前驱(前驱定义P6136 【模板】普通平衡树(数据加强版) 非旋转treap算法指针版
P6136 【模板】普通平衡树(数据加强版) //非旋转的Treap树 #include<bits/stdc++.h> using namespace std; const int INF=0x7fffffff; struct Node *nil; // 自定义的空指针,防止翻车(RE) struct Node { Node *ch[2]; // 结点的左右孩子。为什么不分开写成lc,rc呢?往后就知道了 i索引
link to luguo Update 2022.1.22:将有推导过程的代码部分替换成链接形式 努力建设中的模板 part: Johnson全源最短路【已解析】 珂朵莉树-ODT【已解析】 迭代加深搜索 (IDDFS)【已解析】 线性基【已解析】 舞蹈链(Dancing Link X)【已解析】 计算几何【已证】 BSGS/扩展BSGS【已证】平衡树Treap
treap: treap=tree+heap,树+堆 也就是说,这个东西是个树,但是满足堆的性质。 前置知识: BST二叉搜索树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值。 也就是说,你把它从根节点中序遍历一边就能得到一个从平衡树
fhq treap(无旋treap) treap:其中每个点有输入值与随机值两种值,输入值满足二叉树性质,随机值满足堆性质。 而fhq如何实现平衡呢 它需要两个操作:分裂与合并 分裂: 目的:将其分成所有权值都大于或小于等于某一值的两棵平衡树 我们现在需要两个指针,每一次走到该点权值是否大于该值的反方向fhq treap
#include<bits/stdc++.h> using namespace std; int n,m,tot; struct treap { int ch[3],pri,size,v; }t[100010]; void update(int x) { t[x].size=1+t[t[x].ch[0]].size+t[t[x].ch[1]].size; } int new_node(int x) { t[++tot].v=x; t[tot].size=1; t[tot].pri=fhq_treap
前言 继续水长度 上期线段树我们说过lhy26老师六个月才写了一篇博客不到一半,现在我要帮他写一下这篇他至今没写完但错误甚多的博客 本文所有操作默认为luoguP3369 【模板】普通平衡树 定义 fhq treap(又名无旋treap),就是通过分裂(split)和合并(merge)来维护平衡树平衡的性质,相比起所【YBT2022寒假Day2 B】【luogu CF809D】模糊序列 / Hitchhiking in the Baltic States(平衡树优化DP)(fhq-Treap)
模糊序列 / Hitchhiking in the Baltic States 题目链接:YBT2022寒假Day2 B / luogu CF809D 题目大意 给你一个序列,然后每个位置有可以选的数的范围。 然后要你找到对于所有可能的序列它严格上升子序列的最大长度。 思路 很明显的 DP。 考虑列方程,发现数的范围很大,考虑从答案序列长treap的实现及应用
TREAP 的实现及应用 概念 treap是tree+heap的合成,顾名思义,它既有堆(heap)的性质,又有二叉查找树(tree)的性质. treap中每个节点有两个属性 A A A和 B模板:fhq treap
普通平衡树: #include <iostream> #include <cstdio> #include <cstring> #include <ctime> #include <cstdlib> using namespace std; const int N=100010; int read() { int x=0,f=0,c=getchar(); while(c<'0'||c>'9OI学习日志 12月份
前面应该还有几天有记入,但是好像没有保存:( 2021.12.9 - 学习fhq treap的第2天,有点领会到其间精髓了,但是还不是很清楚 - 我落实代码能力还是太弱了,这导致我做题的时候一直抗拒去推正解。 $a^{2}$[学习笔记]平衡树维护序列操作
只会无旋\(treap\)。 因为不会\(splay\)。 用平衡树维护序列操作时,我们的\(key\)为序列下标,即我们中序遍历整颗树,其和答案序列相同。 下面说明以无旋\(treap\)说明几种操作。 三种比较常见的对序列操作的,线段树无法操作的: 插入 即和普通无旋\(treap\)插入单点一样,分裂,单点,合并。学习笔记:Splay
之前学习 Treap 的时候理解的不是太好,堆性质和 BST 性质结合得不是很好。发现后续知识对于 Splay 是需要掌握的,于是心血来潮学习了 Splay,个人感觉理解的比 Treap 好,以后手写平衡树就用 Splay 啦。 模板题:Splay 开点 正常比较类似 Treap,只不过不需要随机啦。特殊需要记录的是每个节FHQ Treap
本质:无 rotate 平衡树。 一旦没了 rotate,代码就短好多,思路也清晰。 首先说一下,这个东西可以搞一切 bst , treap , splay 所能搞的东西。 ——自为风月马前卒 整个数据结构中只有 \(2\) 种操作、\(1\) 种询问: \(\mathtt{split}\) 把一棵树分成两棵树。 \(\mathtt{merge}\) 把