P1073 最优贸易 分层图+最长路
作者:互联网
洛谷p1073 最优贸易
链接
首先易得暴n2的暴力,暴力枚举就行
显然1e5的数据是会炸的
我们再分析题意,发现一共分为两个个步骤,也可以说是状态,即在一个点买入,在另一个点卖出,我们可以构建一个三层分层图
第一层的每个点和第二层的对应点各连接一条权值为-val[i](val[i]表示i号点的水晶价格)的单向边
表示在i号点买进,
再在第二层的每个点向第三层的对应点各连接一条权值为val[j]的有向边
表示在j号点卖出,
构建好分层图后
我们在分层图上跑最长路
以第三层中的n号点为终点
便可求解
即使有负权,可我们因为跑的是最长路
所以dijistla不受影响
ac代码如下
时间复杂度边为3mlog3m
#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<queue>
#define inf -0x3f3f3f3f
using namespace std;
const int maxn=5e5;
inline int read(){
int ret=0;
int f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')
f=-f;
ch=getchar();
}
while(ch>='0'&&ch<='9'){
ret=ret*10+(ch^'0');
ch=getchar();
}
return f*ret;
}
struct edge{
int nex;
int to;
int v;
}e[maxn*3];
struct node{
int u,d;
bool operator <(const node &x) const{
return x.d<d;
}
};
int head[maxn*3];
int cnt;
void add(int u,int to,int v){
cnt++;
e[cnt].nex=head[u];
e[cnt].to=to;
e[cnt].v=v;
head[u]=cnt;
}
int n,m;
int dis[maxn*3];
int val[maxn];
inline void di(int s){
for(int i=1;i<=n;i++){
dis[i]=inf;
}
dis[s]=0;
priority_queue<node>q;
q.push((node){s,0});
while(!q.empty()){
node f=q.top();
q.pop();
int u=f.u;
int d=f.d;
if(dis[u]!=d)
continue;
for(int i=head[u];i;i=e[i].nex){
int v=e[i].v;
int y=e[i].to;
if(dis[u]+v>dis[y]){
dis[y]=dis[u]+v;
q.push((node){y,dis[y]});
}
}
}
}
int main(){
// freopen("a.in","r",stdin);
n=read();
m=read();
for(int i=1;i<=n;i++){
val[i]=read();
add(i,i+n,-val[i]);
add(i+n,+2*n+i,val[i]);
}
int x,y,z;
for(int i=1;i<=m;i++){
x=read();
y=read();
z=read();
add(x,y,0);
add(x+n,y+n,0);
add(x+2*n,y+2*n,0);
if(z==2){
add(y,x,0);
add(y+n,x+n,0);
add(y+2*n,x+2*n,0);
}
}
n=n*3;
di(1);
cout<<dis[n];
return 0;
}
结束喽!
标签:ch,int,分层,最优,include,P1073,号点,dis 来源: https://www.cnblogs.com/rpup/p/13616317.html