其他分享
首页 > 其他分享> > 极限证题例一

极限证题例一

作者:互联网

\[求\lim_{x \to 0} \frac{1-cosx}{x^{2} } \]

\[\because 1-cosx = sin^{2}x \]

\[\therefore \lim_{x \to 0} \frac{1-cosx}{x^{2} } \]

\[\Rightarrow \lim_{x \to 0} \frac{sin^{2}x}{x^{2} } \]

\[分子分母同时除以2 \Rightarrow \lim_{x \to 0} \frac{ sin^{2} \frac{x}{2} }{\frac{x^2}{2} } \]

\[分母变形 \Rightarrow \lim_{x \to 0} \frac{ sin^{2} \frac{x}{2} }{2\cdot \frac{x^2}{4} } \]

\[\Rightarrow \frac{1}{2} \cdot \lim_{x \to 0} \frac{ sin^{2} \frac{x}{2} }{\frac{x^2}{4} } \]

\[\Rightarrow \frac{1}{2} \cdot \lim_{x \to 0} ( \frac{sin \frac{x}{2}} {\frac{x}{2}})^{2} \]

\[\because sin\frac{x}{x}(x\to 0)=1 \]

\[\therefore \frac{1}{2} \lim_{x \to 0} {1}^{2}=\frac{1}{2} \]

标签:例一,frac,cdot,lim,极限,证题,cosx,sin,Rightarrow
来源: https://www.cnblogs.com/Preparing/p/16486064.html