其他分享
首页 > 其他分享> > Codeforces.209C.Trails and Glades(构造 欧拉回路)

Codeforces.209C.Trails and Glades(构造 欧拉回路)

作者:互联网

题目链接


\(Description\)

给定一张\(n\)个点\(m\)条边的无向图,允许有自环重边。求最少加多少条边后,其存在从\(1\)出发最后回到\(1\)的欧拉回路。
注意,欧拉回路是指要经过所有边,无边(边包括自环)连向的孤立点不需要考虑。但是\(1\)一定要经过。
\(n,m\leq10^6\)。

\(Solution\)

如果图连通,奇度数点两两连边即可。
如果图不连通,对于每个奇度数点需要向外连一条边;没有奇度数点的连通块就随便找一个点往外连两条边。另外强制选\(1\)即可。
答案是统计的边数除以\(2\)。


//218ms 32600KB
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 500000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=1e6+6;

int Enum,H[N],nxt[N<<1],to[N<<1],fa[N],dgr[N],cnt[N];
bool tag[N];
char IN[MAXIN],*SS=IN,*TT=IN;

inline int read()
{
    int now=0;register char c=gc();
    for(;!isdigit(c);c=gc());
    for(;isdigit(c);now=now*10+c-48,c=gc());
    return now;
}
inline void AE(int u,int v)
{
    to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
    to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum;
}
int Find(int x)
{
    return x==fa[x]?x:fa[x]=Find(fa[x]);
}

int main()
{
    const int n=read(),m=read();
    for(int i=1; i<=n; ++i) fa[i]=i;
    tag[1]=1;
    for(int i=1,u,v; i<=m; ++i)
    {
        int r1=Find(u=read()),r2=Find(v=read());
        fa[r1]=r2, ++dgr[u], ++dgr[v], tag[u]=tag[v]=1;
    }
    for(int i=1; i<=n; ++i) cnt[Find(i)]+=dgr[i]&1;
    int ans=0,two=0,tot=0;
    for(int i=1; i<=n; ++i)
        if(tag[i] && Find(i)==i)
        {
            ++tot;
            if(cnt[i]) ans+=cnt[i];
            else ++two;
        }
    printf("%d\n",tot==1?ans>>1:(ans>>1)+two);

    return 0;
}

标签:度数,SS,Trails,TT,Glades,include,Codeforces.209,欧拉,define
来源: https://www.cnblogs.com/SovietPower/p/10463381.html