首页 > TAG信息列表 > TFRS

TFRS之DCN模型

什么是特性交叉,为什么它们很重要?想象一下,我们正在建立一个向客户出售搅拌机的推荐系统。然后,客户过去的购买历史,如purchased_bananas和purchased_cooking_books,或地理特征,都是单一特征。如果一个人同时购买了香蕉和烹饪书籍,那么这个顾客更有可能点击推荐的搅拌机。purchased

TFRS之深层检索模型

一般来说,较深的模型比较浅的模型能够学习更复杂的模式。例如,我们的用户模型包含用户id和时间戳,以在某个时间点对用户偏好进行建模。一个浅层模型(比如,一个单一的嵌入层)可能只是学习到特征和电影之间最简单的关系:一个给定的电影在它发布的时候最受欢迎,一个给定的用户通常更

TFRS之特征预处理

常用的特征处理策略: 用户id和物品id必须转换成嵌入向量原始文本需要tokenized,并翻译成嵌入文本数值特征需要标准化 通过使用TensorFlow,我们可以将这种预处理作为模型的一部分,而不是单独的预处理步骤。这不仅方便,也确保了我们的预处理在培训和服务期间是完全相同的。这使得部

TFRS之分布式信息检索

import os import pprint import tempfile from typing import Dict, Text import numpy as np import tensorflow as tf import tensorflow_datasets as tfds import tensorflow_recommenders as tfrs 数据集 # Ratings data. ratings = tfds.load("movielens/100k-rat

TFRS之信息检索

数据源: Movielens dataset import os import pprint import tempfile # 类型检查,防止运行时出现参数和返回值类型不符合。传入参数参数名:类型,通过 -> 结果类型 from typing import Dict, Text import numpy as np import tensorflow as tf import tensorflow_datasets as t