TFRS之DCN模型
作者:互联网
什么是特性交叉,为什么它们很重要?想象一下,我们正在建立一个向客户出售搅拌机的推荐系统。然后,客户过去的购买历史,如purchased_bananas和purchased_cooking_books,或地理特征,都是单一特征。如果一个人同时购买了香蕉和烹饪书籍,那么这个顾客更有可能点击推荐的搅拌机。purchased_bananas和purchased_cooking_books的组合被称为功能交叉,它提供了单个功能之外的额外交互信息。
学习特性交叉的挑战是什么?在web规模的应用程序中,数据大多是分类的,导致了大而稀疏的特征空间。在这种情况下,识别有效的特征交叉通常需要手工特征工程或穷举搜索。传统的前馈多层感知器模型是通用函数逼近器;然而,它们甚至不能有效地逼近二阶或三阶特征交叉
import pprint
%matplotlib inline
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs
我们首先建立了一个以均方误差为损失的统一模型类
class Model(tfrs.Model):
def __init__(self, model):
super().__init__()
self._model = model
self._logit_layer = tf.keras.layers.Dense(1)
self.task = tfrs.tasks.Ranking(
loss=tf.keras.losses.MeanSquaredError(),
metrics=[
tf.keras.metrics.RootMeanSquaredError("RMSE")
]
)
def call(self, x):
x = self._model(x)
return self._logit_layer(x)
def compute_loss(self, features, training=False):
x, labels = features
scores = self(x)
return self.task(
labels=labels,
predictions=scores,
)
指定cross network 和 ReLU-based DNN
crossnet = Model(tfrs.layers.dcn.Cross())
deepnet = Model(
tf.keras.Sequential([
tf.keras.layers.Dense(512, activation="relu"),
tf.keras.layers.Dense(256, activation="relu"),
tf.keras.layers.Dense(128, activation="relu")
])
)
数据集
ratings = tfds.load("movie_lens/100k-ratings", split="train")
ratings = ratings.map(lambda x: {
"movie_id": x["movie_id"],
"user_id": x["user_id"],
"user_rating": x["user_rating"],
"user_gender": int(x["user_gender"]),
"user_zip_code": x["user_zip_code"],
"user_occupation_text": x["user_occupation_text"],
"bucketized_user_age": int(x["bucketized_user_age"]),
})
随机划分训练集和测试集
tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)
train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)
特征词汇表
feature_names = ["movie_id", "user_id", "user_gender", "user_zip_code",
"user_occupation_text", "bucketized_user_age"]
vocabularies = {}
for feature_name in feature_names:
vocab = ratings.batch(1_000_000).map(lambda x: x[feature_name])
vocabularies[feature_name] = np.unique(np.concatenate(list(vocab)))
模型结构:
class DCN(tfrs.Model):
def __init__(self, use_cross_layer, deep_layer_sizes, projection_dim=None):
super().__init__()
self.embedding_dimension = 32
str_features = ["movie_id", "user_id", "user_zip_code",
"user_occupation_text"]
int_features = ["user_gender", "bucketized_user_age"]
self._all_features = str_features + int_features
self._embeddings = {}
# Compute embeddings for string features.
for feature_name in str_features:
vocabulary = vocabularies[feature_name]
self._embeddings[feature_name] = tf.keras.Sequential(
[tf.keras.layers.StringLookup(
vocabulary=vocabulary, mask_token=None),
tf.keras.layers.Embedding(len(vocabulary) + 1,
self.embedding_dimension)
])
# Compute embeddings for int features.
for feature_name in int_features:
vocabulary = vocabularies[feature_name]
self._embeddings[feature_name] = tf.keras.Sequential(
[tf.keras.layers.IntegerLookup(
vocabulary=vocabulary, mask_value=None),
tf.keras.layers.Embedding(len(vocabulary) + 1,
self.embedding_dimension)
])
if use_cross_layer:
self._cross_layer = tfrs.layers.dcn.Cross(
projection_dim=projection_dim,
kernel_initializer="glorot_uniform")
else:
self._cross_layer = None
self._deep_layers = [tf.keras.layers.Dense(layer_size, activation="relu")
for layer_size in deep_layer_sizes]
self._logit_layer = tf.keras.layers.Dense(1)
self.task = tfrs.tasks.Ranking(
loss=tf.keras.losses.MeanSquaredError(),
metrics=[tf.keras.metrics.RootMeanSquaredError("RMSE")]
)
def call(self, features):
# Concatenate embeddings
embeddings = []
for feature_name in self._all_features:
embedding_fn = self._embeddings[feature_name]
embeddings.append(embedding_fn(features[feature_name]))
x = tf.concat(embeddings, axis=1)
# Build Cross Network
if self._cross_layer is not None:
x = self._cross_layer(x)
# Build Deep Network
for deep_layer in self._deep_layers:
x = deep_layer(x)
return self._logit_layer(x)
def compute_loss(self, features, training=False):
labels = features.pop("user_rating")
scores = self(features)
return self.task(
labels=labels,
predictions=scores,
)
训练、测试集
cached_train = train.shuffle(100_000).batch(8192).cache()
cached_test = test.batch(4096).cache()
让我们定义一个函数,它多次运行一个模型,并从多次运行中返回模型的RMSE平均值和标准偏差。
def run_models(use_cross_layer, deep_layer_sizes, projection_dim=None, num_runs=5):
models = []
rmses = []
for i in range(num_runs):
model = DCN(use_cross_layer=use_cross_layer,
deep_layer_sizes=deep_layer_sizes,
projection_dim=projection_dim)
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate))
models.append(model)
model.fit(cached_train, epochs=epochs, verbose=False)
metrics = model.evaluate(cached_test, return_dict=True)
rmses.append(metrics["RMSE"])
mean, stdv = np.average(rmses), np.std(rmses)
return {"model": models, "mean": mean, "stdv": stdv}
设置超参数
epochs = 8
learning_rate = 0.01
我们首先训练一个具有堆叠结构的DCN模型,也就是说,输入被馈送到一个交叉网络,然后是一个深网络。
dcn_result = run_models(use_cross_layer=True,
deep_layer_sizes=[192, 192])
标签:DCN,layer,TFRS,keras,模型,user,._,tf,self 来源: https://blog.csdn.net/qq_43283527/article/details/122778147