首页 > TAG信息列表 > FPR

模型评估

查准率、查全率与F1 PR曲线: 若一个学习器的 P-R 曲线被另一个学习器的曲线完全包住,则可断言 后者的性能优于前者,比如A优于C。 平衡点(Break-Event Point ,简称 BEP)处 查全率=查准率,当两个学习器的PR曲线相交时,基于BER,我们可以认为A优于B。但BER太过简化,我们通常用F1来衡量。

模型评价指标(混淆矩阵,AUC,ROC)

一、评价分类结果 分类算法的评价:仅仅使用分类准确度可靠吗? 问题:有一个癌症预测系统,输入体检信息,可以判断是否有癌症。预测准确度:99.9%,是好?是坏? 假如癌症产生的概率只有0.1%,我们的系统预测所有人都是健康,即可达到99.9的准度率! 因此对于极度偏斜(Skewed Data)的数据,只是用分类准确度

机器学习笔记1——经验误差、模型评估方法和性能度量

关于模型的评估 文章目录 关于模型的评估经验误差错误率经验误差过拟合和欠拟合 模型评估方法留出法交叉验证法交叉验证的特例——留一法自助法 性能度量精度和错误率查全率和查准率受试者工作特征——ROC曲线代价敏感错误率和代价曲线期望总体代价和代价曲线 经验

机器学习笔记:模型评估

分类模型性能评估指标混淆矩阵混淆矩阵就是把模型对样本的预测结果统计成如下表格的形式     混淆矩阵一般都是针对二分类问题,如果是多分类问题,则可以把需要关注的那个类别作为正类,其他类别作为负类,就可转化为二分类问题 混淆矩阵中的四个值: True Positive(TP):被模型预测为正的

逻辑回归5-ROC曲线的绘制

1 曲线绘制 关于ROC曲线的绘制过程,通过以下举例进行说明 假设有6次展示记录,有两次被点击了,得到一个展示序列(1:1,2:0,3:1,4:0,5:0,6:0),前面的表示序号,后面的表示点击(1)或没有点击(0)。然后在这6次展示的时候都通过model算出了点击的概率序列,下面看三种情况。 1.1 概率的序列是(1:0.9,2:0

混淆矩阵、AUC、ROC,傻傻分不清楚?来看这篇就对了

今天是机器学习专题的第18篇文章,我们来看看机器学习领域当中,非常重要的其他几个指标。 混淆矩阵 在上一篇文章当中,我们在介绍召回率、准确率这些概念之前,先讲了TP、FP、FN、和FP这几个值。我们再来简单地回顾一下,我们不能死记硬背这几个指标,否则很容易搞错,并且还容易搞混。我们需

read:Adaptive Learned Bloom Filter (Ada-BF): Efficient Utilization of the Classifier

摘要前言信息的浪费高度依赖于`Generalization`Motivation我们的贡献 回顾BF与LBFA Strict Generalization: 自适应学习的布隆过滤器Simplifying the Hyper-Parameters分析Ada-BF Disjoint Ada-BF(分离的自适应学习BF)简化Hyper-Parameters分析Disjoint Ada-BF Experiment

ROC曲线,曲线下的面积(Aera Under Curve,AUC),P-R曲线

ROC曲线是Receiver Operating Characteristic Curve的简称,中文名为“受试者工作特征曲线”。ROC曲线源于军事领域,而后在医学领域应用甚广,“受试者工作特征曲线”这一名称也正是来自于医学领域。 ROC曲线的横坐标为假阳性率(False Positive Rate,FPR);纵坐标为真阳性率(True Positive

KS值计算

真阳性率(tpr),正例算对的,越高越好, 假阳性率(fpr),正例算错的,越低越好, 一个好的模型应该tpr很高,fpr很低,这种模型识别正例的能力很强,就用 fpr-tpr得到一个值,如果移动阈值,得到fpr和tpr曲线,找在同一个概率下 tpr和fpr最大的差值作为KS((Kolmogorov-Smirnov))值。tpr是0到1,fpr也是,KS

通过三个直观步骤理解ROC曲线

ROC曲线是一个分类模型效果好坏评判的的可视化表示。 在这篇文章中,我将分三个步骤头开始构建ROC曲线。 步骤1:获取分类模型预测 当我们训练一个分类模型时,我们得到得到一个结果的概率。在这种情况下,我们的例子将是偿还贷款的可能性。 概率通常在0到1之间。价值越高,这个人就

【笔试】20春招快手数据类笔试,Python中心极限定理,绘制ROC曲线和AUC值。

题目来源1:中国科学技术大学的牛友fancyjiang https://www.nowcoder.com/discuss/406334?type=all&order=time&pos=&page=1 题目来源2:烟台大学的牛友,@连续。 文章参考:请看原文。哈哈,博主比较急,就没有去参考英文原文,全是从中文博客上学来的。 本文是给狮子大开口要了我150元咨询费的

python 使用sklearn绘制roc曲线选取合适的分类阈值

https://zhuanlan.zhihu.com/p/26293316 比如, 我已经初步训练好了一个模型,现在我想用这个模型从海量的无标记数据集挖掘出某一类数据A,并且想要尽量不包含其他所有类B 但我挖掘出的结果必然包含错误的,我拿出的A越多,同时附带的分类错数据B也就越多, 一般,拿出的A占总体比例越大

统计中的AUC和ROC曲线

在分类预测算法中,我们往往有以下四种情况: 1. 正确预测成错误(FPR,假阴性率) 2. 正确预测成正确(TPR,真阳性率) 3. 错误预测成正确(FNR,假阴性率) 4. 错误预测成错误(TNR,真阴性率)       我们对其中的TPR和FPR较为关注,每次计算都能够计算出来这两个值。如果说我们得预测算法是个二分类算法

sklearn下的ROC与AUC原理详解

ROC全称Receiver operating characteristic。 定义 TPR:true positive rate,正样本中分类正确的比率,即TP/(TP+FN),一般希望它越大越好 FPR:false negtive rage,负样本中分类错误的比率,即FP/(FP+TN),一般希望它越小越好 ROC曲线:以FPR作为X轴,TPR作为y轴 roc_curve函数的原理及计算方式 要

ROC与AUC的定义与使用详解

  分类模型评估: 指标描述Scikit-learn函数 Precision 精准度 from sklearn.metrics import precision_score Recall 召回率 from sklearn.metrics import recall_score F1 F1值 from sklearn.metrics import f1_score Confusion Matrix 混淆矩阵 from sklearn.met

大数据技术之_19_Spark学习_08_Spark 机器学习_01_机器学习概述 + 机器学习的相关概念 + 算法常用指标

第1章 机器学习概述1.1 机器学习是啥?1.2 机器学习能干啥?1.3 机器学习有啥?1.4 机器学习怎么用?第2章 机器学习的相关概念2.1 数据集2.2 泛化能力2.3 过拟合和欠拟合2.4 维度、特征2.5 模型2.6 学习第3章 算法常用指标3.1 精确率和召回率3.2 TPR、FPR & TNR3.3 综合评价指标 F-measur