首页 > TAG信息列表 > 323

322静态同步方法和323解决线程安全问题_lock锁

  静态同步方法 public class SynchronizedStatic implements Runnable { static boolean staticFlag = true; public static synchronized void test0(){ for(int i=0;i<5;i++){ System.out.println("test0:"+Thread.currentThr

323 树的中心

视频链接: #include <iostream> #include <cstring> #include <algorithm> #include <vector> using namespace std; const int N=20010; int n,a,b,c,ans=2e9; struct edge{int v,w;}; vector<edge> e[N]; int d1[N],d2[N],path[N],up[N]; void

323. Number of Connected Components in an Undirected Graph 连通图的数量

You have a graph of n nodes. You are given an integer n and an array edges where edges[i] = [ai, bi] indicates that there is an edge between ai and bi in the graph. Return the number of connected components in the graph.   Example 1: Input: n =

Leetcode #323:无向图中连通分量数(并查集)

Leetcode #323:无向图中连通分量数(并查集) 题目题干示例 题解C++Python 题目 题干 该问题 无向图中连通分量数,看题面: 无向图中连通分量数 Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to

323:棋盘问题

描述 在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。 输入 输入含有多组测试数据。 每组数据的第一行是两个正整数,n k,

323. Number of Connected Components in an Undirected Graph

You have a graph of n nodes. You are given an integer n and an array edges where edges[i] = [ai, bi] indicates that there is an edge between ai and bi in the graph. Return the number of connected components in the graph.   Example 1: Input: n =

Leetcode 323: Number of Connected Components in an Undirected Graph

Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph. Example 1: Input: n = 5 and edges = [[0, 1], [1, 2], [3, 4]] 0

ECON 323: Econometric Analysis

Assignment #1ECON 323: Econometric Analysis 2 - Winter 2020Due January 23, 2020, 10am in classInstructions: While cooperating on the assignment is encouraged, plagiarismis not. I will only accept hand written assignment submitted inperson. DO NOT SUBMIT Y