其他分享
首页 > 其他分享> > luoguP2652同花顺

luoguP2652同花顺

作者:互联网

题目

这道题,我们求最少更换多少张牌就能够满足同花顺

然后我们反向思考一下:最少更换多少张 == 最多有多少张不用换

然后我们考虑同花顺的定义:所谓同花顺,就是指一些扑克牌,它们花色相同,并且数字连续

我们就会发现肯定是尽可能多的不动(而且最终构成的同花顺的起点或结尾可以是原有的扑克牌)

所以我们就可以枚举每张牌作为构成的同花顺的末尾(先去重)

(这里的去重指的是将花色相同,数字相同的扑克牌去掉)

然后我们考虑一共有\(n\)张牌,然后花色为\(a_{i}\),数字为\(b_{i}\)的牌作为当前枚举到的同花顺的末尾

因为枚举到的最后一张扑克牌的数字为\(b_{i}\),花色为\(a_{i}\),所以以这张牌为结尾的同花顺的第一张牌一定是一张花色为\(a_{i}\),数字为\(b_{i}-n+1\)的扑克牌(最后得到的同花顺),因为我们要求最多有多少张不用更换,所以只需要考虑原扑克牌中(去重之后)有多少张扑克牌(设为\(k\))满足条件\(a_{k} == a_{i}\)&&\(a_{i}-n+1 \leq a_{k} \leq a_{i}\)

上述情况总结为两点:

我们先排序,使相同花色的在一起,并且满足相同花色的数字从小到大排列
然后可以用\(queue\)维护,遇到新的不同的花色就清空队列,否则就删除队首不满足的,然后将当前这个枚举到的结尾插入队列,然后每次取个最大的\(size\),最后求得最大的不用更换的牌数(然后用总排数减去就是最终答案了)

#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
int n, ans, cnt;
struct node{
	int x, y;
}a[N], b[N]; 
bool cmp(node op, node opp){
	if(op.x == opp.x) return op.y < opp.y;
	return op.x < opp.x;
}
queue<int> q;
void cl(){
	while(!q.empty()) q.pop();
}
int main(){
	scanf("%d", &n);
	for(int i = 1; i <= n; i ++) scanf("%d %d", &a[i].x, &a[i].y);
	sort(a + 1, a + n + 1, cmp);
	for(int i = 1; i <= n; i ++){
		if(a[i].x == a[i - 1].x && a[i].y == a[i - 1].y) continue;
		b[++ cnt] = a[i];	//cout<<cnt<<"ssddd\n";
	}

	for(int i = 1; i <= cnt; i ++){
		if(b[i].x != b[i - 1].x) cl();
	    while(q.size() && b[i].y - q.front() >= n) q.pop();
		q.push(b[i].y);
		ans = max(ans, (int)q.size()); 
	}

	ans = (n - ans);
	printf("%d\n", ans); 
	fclose(stdin); fclose(stdout);
	return 0;
} 

完美撒花✿✿ヽ(°▽°)ノ✿

标签:花色,同花顺,扑克牌,int,枚举,ans,luoguP2652
来源: https://www.cnblogs.com/wsdslll/p/13664734.html