其他分享
首页 > 其他分享> > Intorduction to Linear Algebra(3) Determinants

Intorduction to Linear Algebra(3) Determinants

作者:互联网

Determinants

introduction to determinants

detA=j=1n(1)i+ja1jAnjdet A=\sum^n_{j=1}(-1)^{i+j}a_{1j}A_{nj}detA=∑j=1n​(−1)i+ja1j​Anj​
detA=i=1n(1)i+jai1Aindet A=\sum^n_{i=1}(-1)^{i+j}a_{i1}A_{in}detA=∑i=1n​(−1)i+jai1​Ain​
if AAA is a triangular matrix the determinants is products of the entries on the main diagonal of AAA

Properties of determinants

Row Operations:
Let AAA be a square matrix.
a.If a multiple of one row of AAA is added to another row to produce a matrix BBB, then detB=detAdet B=detAdetB=detA.
b.If two rows of AAA are interchanged to produce BBB, then detB=detAdetB=-detAdetB=−detA.
c.If one row of AAA is multipled by kkk to produce BBB, then detB=kdetAdetB=k*detAdetB=k∗detA.
Theorem:
If AAA is an n×nn\times nn×n matrix, then detAT=detAdetA^T=detAdetAT=detA
If AAA and BBB are n×nn \times nn×n matrix, then det(AB)=detA×detBdet(AB)=detA \times detBdet(AB)=detA×detB
Linearity Properties of the determinant Function
A(x)=[a1ai1xai+1an]A(x)=[a_1 \cdots a_{i-1} \quad x \quad a_{i+1} \cdots a_{n}]A(x)=[a1​⋯ai−1​xai+1​⋯an​]
T(x)=det[a1ai1xai+1an]T(x)=det[a_1 \cdots a_{i-1} \quad x \quad a_{i+1} \cdots a_{n}]T(x)=det[a1​⋯ai−1​xai+1​⋯an​]
T(cx)=cT(x)T(cx)=cT(x)T(cx)=cT(x)
T(a+b)=T(a)+T(b)T(a+b)=T(a)+T(b)T(a+b)=T(a)+T(b)
Cramer’s Rule:
Let A be an ivertible n×nn\times nn×n matrix. For any bbb in Rn\mathbb R^nRn, the unique solution of Ax=bAx=bAx=b is:
x=detAi(b)detAx=\frac{detA_i(b)}{detA}x=detAdetAi​(b)​
Thus, from AA1=EAA^{-1}=EAA−1=E we could get A1=[detA1(e1)detAdetA1endetAdetAne1detAdetAnendetA]A^{-1}=\begin{bmatrix}\frac{detA_1(e_1)}{detA} & \cdots & \frac{detA_1{e_n}}{detA}\\ \vdots &\vdots & \vdots \\ \frac{detA_n{e_1}}{detA}&\cdots& \frac{detA_n{e_n}}{detA} \end{bmatrix}A−1=⎣⎢⎡​detAdetA1​(e1​)​⋮detAdetAn​e1​​​⋯⋮⋯​detAdetA1​en​​⋮detAdetAn​en​​​⎦⎥⎤​
A1=1detAadjAA^{-1}=\frac{1}{detA}adjAA−1=detA1​adjA

标签:Intorduction,AAA,Linear,nn,detA,frac,cdots,amp,Determinants
来源: https://blog.csdn.net/zbzhzhy/article/details/87900484