其他分享
首页 > 其他分享> > Introduction to Linear Algebra(6) Orthogonal and Least Squares

Introduction to Linear Algebra(6) Orthogonal and Least Squares

作者:互联网

Orthogonal and Least Squares

Inner Product,Length, and Orthiginality

Two vectors uuu and vvv in RnR^nRn are orthogonal if uv=0u\cdot v=0u⋅v=0.
Two vectors uuu and vvv are orthogonal if and only if u+v2=u2+v2||u+v||^2=||u||^2+||v||^2∣∣u+v∣∣2=∣∣u∣∣2+∣∣v∣∣2.
Let A be an m×nm \times nm×n matrix. The orthogonal complement of the row space of AAA is the null space of AAA, and teh orthogonal somplement of the column space of AAA is the null space of AA^\perpA⊥:(RowA)=NulA,(ColA)=NulA(RowA)^{\perp} = Nul A , (ColA)^{\perp}=NulA^{\perp}(RowA)⊥=NulA,(ColA)⊥=NulA⊥

Orthogonal Sets

A set of vectors KaTeX parse error: Can't use function '\u' in math mode at position 14: \{u_1,\cdots,\̲u̲_p\} in RnR^nRn is said to be an orthogonal set if each pair of distinct vectors from theset is orthogonal, that is, if KaTeX parse error: Expected 'EOF', got '\cdotu' at position 4: u_i\̲c̲d̲o̲t̲u̲_j=0 whenever iji\ne ji̸​=j.
Let {u1, ,up}\{u_1,\cdots,u_p\}{u1​,⋯,up​} be an orthogonal baisis for a subspace WWW of RnR^nRn. For each yyy in WWW, the weights in the lienar combinationy=c1u1++cpupy=c_1u_1+\cdots+c_pu_py=c1​u1​+⋯+cp​up​
are given by cj=yujujuj(j=1, ,P)c_j=\frac{y\cdot u_j}{u_j\cdot u_j} (j=1,\cdots,P)cj​=uj​⋅uj​y⋅uj​​(j=1,⋯,P)

An Orthogonal Projection

KaTeX parse error: Expected '}', got '\cdotu' at position 24: …proj_Ly=\frac{y\̲c̲d̲o̲t̲u̲}{u\cdotu}u

Orthonormal Sets

A set {u1, ,up}\{u_1,\cdots,u_p\}{u1​,⋯,up​} is an orthonormal set if it is an oorthogonal set of
An m×nm \times nm×n matrix UUU has orthonormal columns if and only if UTU=IU^TU=IUTU=I.
Let UUU be an m×nm \times nm×n matrix with orthonormal columns, and let xxx and yyy be in RnR^nRn. Then
a.Ux=x||Ux||=||x||∣∣Ux∣∣=∣∣x∣∣
b.(Ux)(uy)=xy(Ux)\cdot(uy)=x\cdot y(Ux)⋅(uy)=x⋅y
c.(Ux)(uy)=0(Ux)\cdot(uy) = 0(Ux)⋅(uy)=0 if and only if xy=0x \cdot y=0x⋅y=0
The best approsimation Theorem
Let WWW be a subspace of RnR^nRn, let yyy be any vector in RnR^nRn, and let y^\hat{y}y^​ be the orthegonal projection of yyy onto WWW. Then y^\hat{y}y^​ is the closet point in WWW to yyy, in the sense that yy^&lt;yv||y-\hat{y}||&lt;||y-v||∣∣y−y^​∣∣<∣∣y−v∣∣
for all vvv in WWW distinct from y^\hat{y}y^​.
If {u1,&ThinSpace;,up}\{u_1,\cdots,u_p\}{u1​,⋯,up​} is an orthonormal basis for a subspace WWW of RnR^nRn, thenprojwy=(yu1)u1+(yu2)u2++(yup)upproj_{w}y=(y\cdot u_1)u_1+(y\cdot u_2)u_2+\cdots+(y\cdot u_p)u_pprojw​y=(y⋅u1​)u1​+(y⋅u2​)u2​+⋯+(y⋅up​)up​
If U=[u1u2up],thenU=[u_1 u_2 \cdots u_p],thenU=[u1​u2​⋯up​],then projwy=UUTyproj_{w}y=UU^Typrojw​y=UUTy for all yyy in RnR^nRn

The GRAM-SCHMIDT PROCESS

Given a basis x1,&ThinSpace;,xpx_1,\cdots,x_px1​,⋯,xp​ for a nonzero subspace WWW of RnR^nRn, definev1=x1v_1=x_1v1​=x1​ x2=x2x2v1v1v1v1x_2 = x_2-\frac{x_2\cdot v_1}{v_1\cdot v_1}v_1x2​=x2​−v1​⋅v1​x2​⋅v1​​v1​ v3=x3x3v1v1v1v1x3v2v2v2v2v_3 = x_3 - \frac{x_3\cdot v_1}{v_1 \cdot v_1}v_1 - \frac{x_3 \cdot v_2}{v_2\cdot v_2} v_2v3​=x3​−v1​⋅v1​x3​⋅v1​​v1​−v2​⋅v2​x3​⋅v2​​v2​ \vdotsvp=xpxpv1v1v1v1xpvp1vp1vp1vp1v_p = x_p - \frac{x_p\cdot v_1}{v_1 \cdot v_1}v_1 \cdots -\frac{x_p\cdot v_{p-1}}{v_{p-1}\cdot v_{p-1}}v_{p-1}vp​=xp​−v1​⋅v1​xp​⋅v1​​v1​⋯−vp−1​⋅vp−1​xp​⋅vp−1​​vp−1​
Then v1,&ThinSpace;,vp{v_1,\cdots,v_p}v1​,⋯,vp​ is an orthogonal basis for WWW. In additionSpan{v1,&ThinSpace;,vk}=Span{x1,&ThinSpace;,xk}for1kpSpan\{v_1,\cdots,v_k\}=Span\{x_1,\cdots, x_k\} for 1 \le k \le pSpan{v1​,⋯,vk​}=Span{x1​,⋯,xk​}for1≤k≤p

QR Factorization of Matrices

If A is an m×nm \times nm×n matrix with linearly independent columns, then AAA cam ne factored as A=QRA = QRA=QR, where QQQ is an m×nm \times nm×n matrix whose columns form an orthonormal basis for ColAColAColA and RRR is an n×nn \times nn×n upper triangular invertible matrix with positive entries on its diagonal.

Least-Squares Problems

If AAA is m×nm \times nm×n and bbb is in RmR^mRm, a least-squares solution of Ax=bAx=bAx=b ia an x^\hat{x}x^ in RnR^nRn such that:bAx^bAx||b-A\hat{x}||\le ||b-Ax||∣∣b−Ax^∣∣≤∣∣b−Ax∣∣
for all xxx in RnR^nRn.
Note that
Ax^A\hat{x}Ax^ is in the ColACol AColA
Let AAA be an m×nm \times nm×n matrix. THe following statements are logically equivalent:
a. The equation Ax=bAx=bAx=b has a unique least-squares solution for each bbb in RmR^mRm.
b. The columns of AAA are linearly independent.
c. The matrix ATAA^{T}AATA is invertible.
When these statments are true, the least-squares solution x^\hat{x}x^ is given by x^=(ATA)1ATb\hat{x}=(A^{T}A)^{-1}A^{T}bx^=(ATA)−1ATb
The set of least-squares solutions of Ax=bAx=bAx=b coincides with the nonempty set of solutions of the normal equations ATA=x=ATbA^{T}A=x =A^{T}bATA=x=ATb.
Alternative Calculations of Least-Squares Solutions
given an m×nm \times nm×n matrix A with linearly independent columns, let A=QRA=QRA=QR be a QR factorization of AAA. Then for each b in RmR^mRm, the equation Ax=bAx=bAx=b has a unique least-squares solution.given by x^=R1QTb\hat{x}=R^{-1}Q^Tbx^=R−1QTb

Least-Squares Lines

For a system: predicted y-value: β0+β1x1\beta_0 +\beta_1 x_1β0​+β1​x1​ Observed y-value:y1y_1y1​
We can write this system as Xβ=X \beta=Xβ=, where X=X=X=, β=[β0,β1]\beta=[\beta_0 , \beta_1]β=[β0​,β1​]

Inner Product spaces

An inner product on a vector space VVV is a function that, to each pair of vectors uuu and vvv in VVV, associates a real number <u,v> and satisfies the following axioms, for all u,vu,vu,v, and www in VVV and all scalars ccc:
1.&lt;u,v&gt;=&lt;v,u&gt;&lt;u,v&gt; = &lt;v,u&gt;<u,v>=<v,u>
2.&lt;u+v,w&gt;=&lt;u,w&gt;+&lt;v,w&gt;&lt;u+v,w&gt;=&lt;u,w&gt;+&lt;v,w&gt;<u+v,w>=<u,w>+<v,w>
3.&lt;cu,v&gt;=c&lt;u,v&gt;&lt;cu,v&gt;=c&lt;u,v&gt;<cu,v>=c<u,v>
4.&lt;u,u&gt;0&lt;u,u&gt; \ge 0<u,u>≥0 and &lt;u,u&gt;=0&lt;u,u&gt;=0<u,u>=0 if and only if u=0u=0u=0
A vector space with an inner product is called an inner product space.

Trend Analysis of Data

g^=c0p0+c1p1+c2p2+c3p3\hat{g}=c_0p_0+c_1p_1+c_2p_2+c_3p_3g^​=c0​p0​+c1​p1​+c2​p2​+c3​p3​ and g^\hat{g}g^​ is called cubic trend function, and c0,&ThinSpace;,c3c_0,\cdots,c_3c0​,⋯,c3​ are the trend coefficients of the data. Thus could use Gram-schmidt process to construct the coefficients c0,&ThinSpace;,c3c_0,\cdots,c_3c0​,⋯,c3​

Fourier Series

Any function could be approsimated as closely as desired by a function of the formF=a0/2+a1cost++ancosnt+b1sint++bnsinntF=a_0/2+a_1cost+\cdots+a_ncosnt+b_1sint+\cdots+b_nsinntF=a0​/2+a1​cost+⋯+an​cosnt+b1​sint+⋯+bn​sinnt
the set {1,cost,cos2t,&ThinSpace;,cosnt,sint,sin2t,&ThinSpace;,sinnt}\{1,cost,cos2t,\cdots,cosnt,sint,sin2t,\cdots,sinnt\}{1,cost,cos2t,⋯,cosnt,sint,sin2t,⋯,sinnt} si orthogonal with respect to the inner product&lt;f,g&gt;=02πf(t)g(t)dt&lt;f,g&gt;=\int_0^{2\pi}f(t)g(t)dt<f,g>=∫02π​f(t)g(t)dt Thus ak=&lt;f,coskt&gt;&lt;coskt,coskt&gt;,bk=&lt;f,sinkt&gt;&lt;sinkt,sinkt&gt;,k1.a_k=\frac{&lt;f,coskt&gt;}{&lt;coskt,coskt&gt;}, b_k=\frac{&lt;f,sinkt&gt;}{&lt;sinkt,sinkt&gt;},k\ge 1. ak​=<coskt,coskt><f,coskt>​,bk​=<sinkt,sinkt><f,sinkt>​,k≥1.

标签:v1,gt,Linear,Orthogonal,Introduction,cdots,cdot,lt,nm
来源: https://blog.csdn.net/zbzhzhy/article/details/88051059