其他分享
首页 > 其他分享> > [Bzoj1047][HAOI2007]理想的正方形(ST表)

[Bzoj1047][HAOI2007]理想的正方形(ST表)

作者:互联网

题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1047

 

题目虽然有一个n的限制,但求二维区间最值首先想到的还是RMQ,但是如果按照往常RMQ的写法,空间复杂度是O(n2*(log2(n)2)),而且需要两个求最大最小,所以会爆空间,大概也会T,233。

所以这个时候发现n还是蛮重要的,dp[i][j]表示以点(i,j)为左上角,(i+(1<<(log2(n)-1)),j+(1<<(log2(n)-1)))为右下角的矩形区域内的最值。

如果不好理解可以在开一维k,即dp[i][j][k]表示以点(i,j)为左上角,(i+(1<<(k-1)),j+(1<<(k-1)))为右下角的矩形区域最值。

这样预处理之后枚举左上角,可以做到O(1)查询区间最值。

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 typedef long long ll;
 4 const int maxn = 1010;
 5 const int inf = 2e9;
 6 int dpM[maxn][maxn];
 7 int dpm[maxn][maxn];
 8 int logk;
 9 int query(int x, int y, int k) {
10     int w = k - (1 << logk);
11     int Max = max(max(dpM[x][y], dpM[x + w][y + w]), max(dpM[x + w][y], dpM[x][y + w]));
12     int Min = min(min(dpm[x][y], dpm[x + w][y + w]), min(dpm[x + w][y], dpm[x][y + w]));
13     return Max - Min;
14 }
15 int main() {
16     int n, m, k, x;
17     scanf("%d%d%d", &n, &m, &k);
18     for (int i = 1; i <= n; ++i)
19         for (int j = 1; j <= m; ++j) {
20             scanf("%d", &x);
21             dpM[i][j] = dpm[i][j] = x;
22         }
23     logk = log2(k);
24     for (int t = 0; t < logk; t++) {
25         for (int i = 1; i + (1 << t) <= n; i++) {
26             for (int j = 1; j + (1 << t) <= m; j++) {
27                 dpM[i][j] = max(max(dpM[i][j], dpM[i + (1 << t)][j + (1 << t)]), max(dpM[i + (1 << t)][j], dpM[i][j + (1 << t)]));
28                 dpm[i][j] = min(min(dpm[i][j], dpm[i + (1 << t)][j + (1 << t)]), min(dpm[i + (1 << t)][j], dpm[i][j + (1 << t)]));
29             }
30         }
31     }
32     int ans = inf;
33     for (int i = 1; i <= n - k+1; i++) {
34         for (int j = 1; j <= m - k+1; j++) {
35             ans = min(ans, query(i, j, k));
36             //cout << query(i, j, k) << " ";
37         }
38     }
39     printf("%d\n", ans);
40 }

 

标签:RMQ,int,long,ST,HAOI2007,Bzoj1047,maxn,左上角,最值
来源: https://www.cnblogs.com/sainsist/p/11147611.html