其他分享
首页 > 其他分享> > MathProblem 51 Maximum volume of cone problem

MathProblem 51 Maximum volume of cone problem

作者:互联网

You have a tortilla with radius 1 and wish to form a cone. You may cut out any wedge you like from the tortilla. The point of the wedge must be at the center of the circle. After cutting out the wedge you then attach the two straight edges remaining to form a cone. What is the maximum ratio of the volume of the cone to the remaining surface area?

Solution

给定一个圆,从圆心出发,挖去一个扇形,将剩下的围成一个圆椎,问最大的体积面积比。

具体示意图见sol

假设圆椎底部半径为 \(r\), 周长为 \(c\), 圆椎高为 \(h\), 圆椎表面积为 \(S\), 体积为 \(V\). 假设减去扇形的中心角为 \(\theta\), 则

\[\frac{\theta}{2\pi}=\frac{2\pi-2\pi r}{2\pi} \]

因此: \(\theta=2\pi-2\pi r\), 扇形的面积:

\[\frac{\theta}{2\pi}\cdot \pi = \frac{\theta}{2} \]

所以扇形面积为: \(\pi-\pi r\), 所以 \(S=\pi r\)

根据勾股定理:\(h=\sqrt{1-r^2}\), 进行积分:

\[V=\int_{0}^{\sqrt{1-r^2}}\pi\cdot (\frac{ry}{\sqrt{1-r^2}})^2dy \]

其中这里的半径我们可以通过相似得到:

\[\frac{h}{r} = \frac{y}{x} \]

其中 \(x\) 即为此时的半径。

现求解 \(V\):

\[\begin{align} V&=\int \pi \frac{r^2 y^2}{1-r^2}dy\\ &= \pi \frac{r^2}{1-r^2}\int y^2 dy\\ &=\frac{\pi}{3}\cdot r^2\cdot \sqrt{1-r^2} \end{align} \]

因此,

\[\frac{V}{S} = \frac{\frac{\pi}{3}\cdot r^2\cdot \sqrt{1-r^2}}{\pi r}=\frac{r}{3}\sqrt{1-r^2} \]

令 \(f = V/S\), 然后 \(f'=0\) 便得到了 \(r=\sqrt{1/2}\)

标签:frac,cdot,MathProblem,51,Maximum,sqrt,theta,pi,圆椎
来源: https://www.cnblogs.com/xinyu04/p/16631937.html