AtCoder Beginner Contest 261 F // 树状数组
作者:互联网
题目链接:F - Sorting Color Balls (atcoder.jp)
题意:
有n个球,球有颜色和数字。对相邻的两球进行交换时,若颜色不同,需要花费1的代价。求将球排成数字不降的顺序,所需的最小代价。
思路:
将完成排序所需的最小代价记作 cost,将颜色不同的逆序对( i < j && xi > xj && ci ≠ cj )数量记作 cnt ,则有 cost = cnt。证明如下:
-
可以构造出一种所需花费为 cnt 的排序方案:将这n个球按颜色切分,即切分成若干个颜色相同的连续区间,那么将每个区间进行排序,不需要花费任何代价,然后再进行冒泡排序,则花费代价恰为 cnt。因此有 cost ≧ cnt 。
-
再证明 cost ≤ cnt :依然先将各个颜色相同的连续区间进行排序,那么不考虑颜色时,总的逆序对变为 cnt 。每次进行相邻数交换,则逆序对数量的变化可能为:+1、0、-1,那么要让逆序对数量变为 0,至少需要 cnt 次交换,因此有 cost ≤ cnt。
那么只需要求出 cnt:求出不考虑颜色时逆序对数量 totalCnt,在求出对于各个颜色,颜色相同的逆序对数量Cnti,因此:cnt = totalCnt - ∑Cnti 。
然后求逆序对,就是树状数组的经典应用了。
代码:
#include <bits/stdc++.h> #define LL long long #define lowbit(x) (x & -x) using namespace std; const int N = 300010; int n, c[N]; vector<int> v[N]; int tr[N]; void add(int x, int c) { for(int i = x; i <= n; i += lowbit(i)) tr[i] += c; } LL sum(int x) { LL res = 0; for(int i = x; i; i -= lowbit(i)) res += tr[i]; return res; } int main() { cin >> n; for(int i = 1; i <= n; i++) scanf("%d", &c[i]); for(int i = 1; i <= n; i++) { int x; scanf("%d", &x); v[0].push_back(x); //v[0]存储不考虑颜色时的值,后续求出不考虑颜色时的逆序对 v[c[i]].push_back(x); //v[ci]则存储考虑颜色时的值,后续求出相同颜色下的逆序对 } LL ans = 0; for(int i = 0; i <= n; i++) { for(auto& x : v[i]) { ans = ans + (i ? -1 : 1) * (sum(n) - sum(x)); add(x, 1); } for(auto& x : v[i]) add(x, -1); } cout << ans << endl; return 0; }
标签:AtCoder,cnt,颜色,Beginner,Contest,int,cost,排序,逆序 来源: https://www.cnblogs.com/jakon/p/16514331.html