opengl-PBR基于物理的渲染(Physically Based Rendering):光照实际渲染器
作者:互联网
-
顶点着色器
#version 330 core layout (location = 0) in vec3 aPos; layout (location = 1) in vec2 aTexCoords; layout (location = 2) in vec3 aNormal; out vec2 TexCoords; out vec3 WorldPos; out vec3 Normal; uniform mat4 projection; uniform mat4 view; uniform mat4 model; void main() { TexCoords = aTexCoords; WorldPos = vec3(model * vec4(aPos, 1.0)); Normal = mat3(model) * aNormal; gl_Position = projection * view * vec4(WorldPos, 1.0); }
-
片段着色器
#version 330 core out vec4 FragColor; in vec2 TexCoords; in vec3 WorldPos; in vec3 Normal; // material parameters uniform sampler2D albedoMap; uniform sampler2D normalMap; uniform sampler2D metallicMap; uniform sampler2D roughnessMap; uniform sampler2D aoMap; // lights uniform vec3 lightPositions[4]; uniform vec3 lightColors[4]; uniform vec3 camPos; const float PI = 3.14159265359; // ---------------------------------------------------------------------------- // Easy trick to get tangent-normals to world-space to keep PBR code simplified. // Don't worry if you don't get what's going on; you generally want to do normal // mapping the usual way for performance anways; I do plan make a note of this // technique somewhere later in the normal mapping tutorial. vec3 getNormalFromMap() { vec3 tangentNormal = texture(normalMap, TexCoords).xyz * 2.0 - 1.0; vec3 Q1 = dFdx(WorldPos); vec3 Q2 = dFdy(WorldPos); vec2 st1 = dFdx(TexCoords); vec2 st2 = dFdy(TexCoords); vec3 N = normalize(Normal); vec3 T = normalize(Q1*st2.t - Q2*st1.t); vec3 B = -normalize(cross(N, T)); mat3 TBN = mat3(T, B, N); return normalize(TBN * tangentNormal); } // ---------------------------------------------------------------------------- float DistributionGGX(vec3 N, vec3 H, float roughness) { float a = roughness*roughness; float a2 = a*a; float NdotH = max(dot(N, H), 0.0); float NdotH2 = NdotH*NdotH; float nom = a2; float denom = (NdotH2 * (a2 - 1.0) + 1.0); denom = PI * denom * denom; return nom / denom; } // ---------------------------------------------------------------------------- float GeometrySchlickGGX(float NdotV, float roughness) { float r = (roughness + 1.0); float k = (r*r) / 8.0; float nom = NdotV; float denom = NdotV * (1.0 - k) + k; return nom / denom; } // 需要将观察方向(几何遮蔽(Geometry Obstruction))和光线方向向量(几何阴影(Geometry Shadowing))都考虑进去。 // 我们可以使用史密斯法(Smith’s method)来把两者都纳入其中---------------------------------------------------------------------------- float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) { float NdotV = max(dot(N, V), 0.0); float NdotL = max(dot(N, L), 0.0); float ggx2 = GeometrySchlickGGX(NdotV, roughness); float ggx1 = GeometrySchlickGGX(NdotL, roughness); return ggx1 * ggx2; } // 菲涅尔方程---------------------------------------------------------------------------- vec3 fresnelSchlick(float cosTheta, vec3 F0) { return F0 + (1.0 - F0) * pow(max(1.0 - cosTheta, 0.0), 5.0); } // ---------------------------------------------------------------------------- void main() { vec3 albedo = pow(texture(albedoMap, TexCoords).rgb, vec3(2.2)); float metallic = texture(metallicMap, TexCoords).r; float roughness = texture(roughnessMap, TexCoords).r; float ao = texture(aoMap, TexCoords).r; vec3 N = getNormalFromMap(); vec3 V = normalize(camPos - WorldPos); // calculate reflectance at normal incidence; if dia-electric (like plastic) use F0 // of 0.04 and if it's a metal, use the albedo color as F0 (metallic workflow) vec3 F0 = vec3(0.04); F0 = mix(F0, albedo, metallic); // reflectance equation vec3 Lo = vec3(0.0); for(int i = 0; i < 4; ++i) { // calculate per-light radiance vec3 L = normalize(lightPositions[i] - WorldPos); vec3 H = normalize(V + L); float distance = length(lightPositions[i] - WorldPos); float attenuation = 1.0 / (distance * distance); vec3 radiance = lightColors[i] * attenuation; // Cook-Torrance BRDF float NDF = DistributionGGX(N, H, roughness); float G = GeometrySmith(N, V, L, roughness); vec3 F = fresnelSchlick(max(dot(H, V), 0.0), F0); vec3 numerator = NDF * G * F; float denominator = 4 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.001; // 0.001 to prevent divide by zero. vec3 specular = numerator / denominator; // kS is equal to Fresnel vec3 kS = F; // for energy conservation, the diffuse and specular light can't // be above 1.0 (unless the surface emits light); to preserve this // relationship the diffuse component (kD) should equal 1.0 - kS. vec3 kD = vec3(1.0) - kS; // multiply kD by the inverse metalness such that only non-metals // have diffuse lighting, or a linear blend if partly metal (pure metals // have no diffuse light). kD *= 1.0 - metallic; // scale light by NdotL float NdotL = max(dot(N, L), 0.0); // add to outgoing radiance Lo Lo += (kD * albedo / PI + specular) * radiance * NdotL; // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again } // ambient lighting (note that the next IBL tutorial will replace // this ambient lighting with environment lighting). vec3 ambient = vec3(0.03) * albedo * ao; vec3 color = ambient + Lo; // HDR tonemapping color = color / (color + vec3(1.0)); // gamma correct color = pow(color, vec3(1.0/2.2)); FragColor = vec4(color, 1.0); }
-
主函数
// build and compile shaders // ------------------------- Shader shader("1.2.pbr.vert", "1.2.pbr.frag"); shader.use(); shader.setInt("albedoMap", 0); shader.setInt("normalMap", 1); shader.setInt("metallicMap", 2); shader.setInt("roughnessMap", 3); shader.setInt("aoMap", 4); // load PBR material textures // -------------------------- unsigned int albedo = loadTexture("resources/textures/pbr/rusted_iron/albedo.png"); unsigned int normal = loadTexture("resources/textures/pbr/rusted_iron/normal.png"); unsigned int metallic = loadTexture("resources/textures/pbr/rusted_iron/metallic.png"); unsigned int roughness = loadTexture("resources/textures/pbr/rusted_iron/roughness.png"); unsigned int ao = loadTexture("resources/textures/pbr/rusted_iron/ao.png"); // lights // ------ glm::vec3 lightPositions[] = { glm::vec3(0.0f, 0.0f, 10.0f), }; glm::vec3 lightColors[] = { glm::vec3(150.0f, 150.0f, 150.0f), }; //球体数量 int nrRows = 7; int nrColumns = 7; float spacing = 2.5; // initialize static shader uniforms before rendering // -------------------------------------------------- glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f); shader.use(); shader.setMat4("projection", projection);
// render loop // ----------- while (!glfwWindowShouldClose(window)) { // per-frame time logic // -------------------- float currentFrame = glfwGetTime(); deltaTime = currentFrame - lastFrame; lastFrame = currentFrame; // input // ----- processInput(window); // render // ------ glClearColor(0.1f, 0.1f, 0.1f, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); shader.use(); glm::mat4 view = camera.GetViewMatrix(); shader.setMat4("view", view); shader.setVec3("camPos", camera.Position); //绑定纹理图片 glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, albedo); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, normal); glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, metallic); glActiveTexture(GL_TEXTURE3); glBindTexture(GL_TEXTURE_2D, roughness); glActiveTexture(GL_TEXTURE4); glBindTexture(GL_TEXTURE_2D, ao); // render rows*column number of spheres with material properties defined by textures (they all have the same material properties) //按照球体数量的行和列来渲染球体 glm::mat4 model = glm::mat4(1.0f); for (int row = 0; row < nrRows; ++row) { for (int col = 0; col < nrColumns; ++col) { model = glm::mat4(1.0f); model = glm::translate(model, glm::vec3( (float)(col - (nrColumns / 2)) * spacing, (float)(row - (nrRows / 2)) * spacing, 0.0f )); shader.setMat4("model", model); renderSphere();//开始渲染 } } // render light source (simply re-render sphere at light positions) // this looks a bit off as we use the same shader, but it'll make their positions obvious and // keeps the codeprint small. //在光源出再渲染一个普通的球体 for (unsigned int i = 0; i < sizeof(lightPositions) / sizeof(lightPositions[0]); ++i) { glm::vec3 newPos = lightPositions[i] + glm::vec3(sin(glfwGetTime() * 5.0) * 5.0, 0.0, 0.0); newPos = lightPositions[i]; shader.setVec3("lightPositions[" + std::to_string(i) + "]", newPos); shader.setVec3("lightColors[" + std::to_string(i) + "]", lightColors[i]); model = glm::mat4(1.0f); model = glm::translate(model, newPos); model = glm::scale(model, glm::vec3(0.5f)); shader.setMat4("model", model); renderSphere(); } // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.) // ------------------------------------------------------------------------------- glfwSwapBuffers(window); glfwPollEvents(); }
标签:1.0,glm,PBR,Physically,float,shader,vec3,Based,model 来源: https://blog.csdn.net/wqdqwass/article/details/122247083