其他分享
首页 > 其他分享> > 实变函数自制笔记6:初识可测函数

实变函数自制笔记6:初识可测函数

作者:互联网

1、可测函数及其与简单函数的联系:

  1. 对于可测集E\subset \mathbb{R}^{n}E上的简单函数\psi \left ( x \right )是可测的;
  2. (简单函数逼近定理1)若f\left ( x \right )为定义在可测集E\subset \mathbb{R}^{n}上的非负函数,则有:f\left ( x \right )E\subset \mathbb{R}^{n}上非负可测\Leftrightarrow \exists E上的非负渐增的简单函数列\left \{ \psi _{m}\left ( x \right ) \right \}\left ( 0\leq \psi _{1}\left ( x \right ) \leq \psi _{2}\left ( x \right )\leq\cdots \leq \psi _{m}\left ( x \right )\leq \cdots \right ),有f\left ( x \right )=\lim_{m\rightarrow \infty }\psi _{m}\left ( x \right ),x\in E
  3. (简单函数逼近定理2)若 f\left ( x \right )E上可测,则\exists \left \{ \psi _{m}\left ( x \right ) \right \}为可测简单函数列,使得\left | \psi _{m}\left ( x \right ) \right |\leqslant \left | f\left ( x \right ) \right |,且有f\left ( x \right )=\lim_{m\rightarrow \infty }\psi _{m}\left ( x \right ),x\in E
  4. f\left ( x \right )可测\Leftrightarrow f^{+},f^{-}都是可测函数;
  5. f\left ( x \right )为定义在可测集E\subset \mathbb{R}^{n}上的函数,则有:f\left ( x \right )E\subset \mathbb{R}^{n}上可测当且仅当以下条件之一成立: 

    1. \forall a\in \mathbb{R},\left \{ x\mid x\in E,f(x)\geqslant a \right \}=\bigcap_{k=1}^{\infty }\left \{ x\mid x\in E,f(x)>a-\frac{1}{k} \right \}可测;

    2. \forall a\in \mathbb{R},\left \{ x\mid x\in E,f(x)< a \right \}=E-\left \{ x\mid x\in E,f(x)\geqslant a \right \}可测;

    3. \forall a\in \mathbb{R},\left \{ x\mid x\in E,f(x)\leqslant a \right \}=E-\left \{ x\mid x\in E,f(x)> a \right \}可测;

    4. \forall a\in \mathbb{R},\left \{ x\mid x\in E,f(x)= a \right \}=\left \{ x\mid x\in E,f(x)\geqslant a \right \} \cap \left \{ x\mid x\in E,f(x)\leqslant a \right \}可测;

    5. \left \{ x\mid x\in E,f(x)< +\infty \right \}=\bigcup_{k=1}^{\infty } \left \{ x\mid x\in E,f(x)< k \right \}可测;

    6. \left \{ x\mid x\in E,f(x)= +\infty \right \}=E- \left \{ x\mid x\in E,f(x)< +\infty \right \}可测;

    7. \left \{ x\mid x\in E,f(x)>-\infty \right \}=\bigcup_{k=1}^{\infty } \left \{ x\mid x\in E,f(x)>- k \right \}可测;

    8. \left \{ x\mid x\in E,f(x)= -\infty \right \}=E- \left \{ x\mid x\in E,f(x)>-\infty \right \}可测;

  6.  若f\left ( x \right )为定义在可测集E_{1}\cup E_{2}\subset \mathbb{R}^{n}上的广义实值函数,则f\left ( x \right )E_{1},E_{2}上均可测\Leftrightarrow f\left ( x \right )E_{1}\cup E_{2}上可测;

  7. f\left ( x \right )E上可测,AE中的可测集,则f\left ( x \right )看做是在A上的函数,在A上也是可测的;  

2、几乎处处类概念:

3、可测函数的基本性质:    

  1. f\left ( x \right )=g\left ( x \right ),\textup{a.e. }x\in E,则f\left ( x \right )E上可测时,g\left ( x \right )也在E上可测;
  2. f\left ( x \right )E上可测,E_{0}E的可测子集,则 f\left ( x \right )E_{0}上可测;
  3. f\left ( x \right )E_{i}\left ( i=1,2,\cdots \right )上可测,则 f\left ( x \right )\bigcup_{i=1}^{\infty }E_{i}上可测;

  4. 若 f\left ( x \right ),g\left ( x \right )E\subset \mathbb{R}^{n}上的可测函数,则满足以下性质:

    1. cf\left ( x \right )\left ( c\in \mathbb{R} \right )E上可测;

    2. f\left ( x \right )+g\left ( x \right )E上几乎处处有意义时, f\left ( x \right )+g\left ( x \right )E上可测;

    3. f\left ( x \right )g\left ( x \right )E上几乎处处有意义时, f\left ( x \right )g\left ( x \right )E上可测;

    4. \frac{f\left ( x \right )}{g\left ( x \right )}E上几乎处处有意义时, \frac{f\left ( x \right )}{g\left ( x \right )}E上可测;

  5. 若 \left \{ f_{k}\left ( x \right ) \right \}E\subset \mathbb{R}^{n}上的可测函数列,则\sup_{k\geqslant 1}\left \{ f_{k}\left ( x \right ) \right \},\inf_{k\geqslant 1}\left \{ f_{k}\left ( x \right ) \right \},\varlimsup_{k\rightarrow \infty }f_{k}\left ( x \right ),\varliminf_{k\rightarrow \infty }f_{k}\left ( x \right )均在E上可测;

  6. 若 \left \{ f_{k}\left ( x \right ) \right \}E\subset \mathbb{R}^{n}上的可测函数列,且f_{k}\left ( x \right )\rightarrow f\left ( x \right ),\textup{a.e. }x\in E,则f\left ( x \right )E上可测; 

  7. f\left ( x \right )E上可测\Leftrightarrow f^{+},f^{-}均在E上可测;

  8. f\left ( x \right )E上可测\Rightarrow \left | f\left ( x \right ) \right |E上可测;

标签:实变,可测,函数,7D%,5C%,20%,20x%
来源: https://blog.csdn.net/qq_42914565/article/details/121534038