其他分享
首页 > 其他分享> > [学习笔记]有上下界的网络流

[学习笔记]有上下界的网络流

作者:互联网

对于有上下界的网络流问题,涉及判是否有解及求解最大/小流,费用流.

基本建图

建立超级源\(S\),超级汇\(T\).
对于边\((u,v)\)=\([l,u]\),将其拆成三条边:

  1. \((S,v)=l\);
  2. \((u,v)=u-l\);
  3. \((u,T)=l.\)

因为对于边\((u,v)=[l,u]\),
\(u\)至少流出\(l\)的流量,\(v\)至少流入\(l\)的流量,所以建边\((S,v)=l,(u,T)=l\);
而\(u->v\)有\(u-l\)的流量是自由流,所以建边\((u,v)=u-l\).

显然\(S->u,u->T\)有可能有多条边,合并这些边,节省空间.

无源汇

可行流

求\(S->T\)的最大流,从\(S\)出发的边全部满流则可行,因为说明所有边的下界均已满足.每条边的实际流为自由流+流量下界.

有源汇

可行流

加一条边\((t,s)=+\infty\).转成无源汇.
求\(S->T\)的最大流,从\(S\)出发的边全部满流则可行.

最大流

求出可行流后,在残量网络上求\(s->t\)的最大流.

理由:
\(s->t\)跑的是\(S->T\)的反向边,这时下界的流量已经在反向边中了,\((t,s)=+\infty,S,T\)不会影响到最大流,所以是合法的答案.

最小流

先不加\((t,s)=+\infty\)这条边,这时跑\(S->T\)的最大流可求出\(t->s\)的最大流,也就是在合法的情况下最多能减去多少.
然后再加\((t,s)=+\infty\)这条边,此时残量网络\(S->T\)的最大流即为答案.

2017-03-14 11:20:47

标签:infty,可行,最大,网络,笔记,下界,流量
来源: https://www.cnblogs.com/AireenYe/p/15601026.html