微积分(A)随缘一题[19]
作者:互联网
\[\begin{aligned} \int \frac{dx}{(1+x^2)^2} =& \int \frac{\sec^2t dt}{\sec^4t} \\ =&\int \cos^2 t dt \\ =&\frac{1}{4}\int \cos 2t \cdot d(2t)+\frac{1}{2}\int dt \\ =&\frac{1}{4}\sin 2t+\frac{1}{2}t+C \\ =&\frac{1}{4}\sin 2\arctan x+\frac{1}{2}\arctan x+C \\ =&\frac{1}{2} \left(\sin \arctan x\cos \arctan x+\arctan x \right) + C \\ =&\frac{1}{2}\left( x \frac{\cos ^2 \arctan x}{\sin^2 \arctan x+\cos^2 \arctan x}+\arctan x\right)+C \\ =&\frac{1}{2}\left(\frac{x}{x^2+1}+\arctan x \right)+C \end{aligned} \]试求:\(\int \frac{dx}{(1+x^2)^2}\)
生活小妙招:
\[\begin{aligned} \int \frac{dx}{1+x^2} =&\frac{x}{1+x^2}-\int x \frac{-2x}{(1+x^2)^2}dx \\ =&\frac{x}{1+x^2}+\int \frac{2(x^2+1)-2}{(x^2+1)^2}dx \\ =&\frac{x}{1+x^2}+2 \int \frac{dx}{1+x^2}-2\int \frac{dx}{(1+x^2)^2} \end{aligned} \]移项:
\[\begin{aligned} \int \frac{dx}{(1+x^2)^2}= -\frac{1}{2}\frac{x}{1+x^2} + \frac{1}{2}\int \frac{dx}{1+x^2} \end{aligned}=\frac{1}{2} \left(\frac{x}{1+x^2}+\arctan x \right)+C \]实际上:
\[\begin{aligned} \int \frac{dx}{(1+x^a)^n} =&\frac{x}{(1+x^a)^n}-\int \frac{-nax^{a}}{(1+x^a)^{n+1}}dx \\ =&\frac{x}{(1+x^a)^n}+na \int \frac{x^a+1-1}{(1+x^a)^{n+1}}dx \\ =&\frac{x}{(1+x^a)^n}+na\int \frac{dx}{(1+x^a)^{n}}-na \int \frac{dx}{(1+x^a)^{n+1}} \\ \end{aligned} \]所以:
\[\int \frac{dx}{(1+x^a)^{n+1}}=\frac{x}{na(1+x^a)^n}+\frac{na-1}{na}\int \frac{dx}{(1+x^a)^n} \]标签:frac,19,na,微积分,arctan,int,dx,随缘,aligned 来源: https://www.cnblogs.com/nekko/p/15562990.html