微积分(A)随缘一题[4]
作者:互联网
利用零点存在定理证明:
- 设 \(f \in C(-\infty,+\infty)\) 且 \(f(f(x))=x\),证明:\(\exists \zeta \in (-\infty,+\infty),s.t.f(\zeta)=\zeta\)
- 设 \(f(x)\) 是以 \(2\pi\) 为周期的连续函数,证明:在任何一个周期内,有 \(\exists \zeta \in \mathbb{R},s.t.f(\zeta+\pi)=f(\zeta)\) 成立
- 设 \(f\in C[a,b]\),且 \(f([a,b]) \subset [a,b]\),证明:\(\exists \zeta \in [a,b],s.t. f(\zeta)=\zeta\)
- 考虑反证法,假设 \(\forall x \in \mathbb{R},f(x)>x\),则 \(x=f(f(x))>f(x)>x\) 产生矛盾,所以 \(\exists x_1 \in \mathbb{R},s.t.f(x_1) \le x_1\)
同理有 \(\exists x_2 \in \mathbb{R},s.t.f(x_2) \ge x_2\)
设 \(g(x)=f(x)-x\),则 \(g(x_1) \le 0,g(x_2) \ge 0\),所以 \(\exists \min\{x_1,x_2\} \le \zeta \le \max\{x_1,x_2\},s.t.g(\zeta)=0 \Rightarrow \exists \zeta \in \mathbb{R},s.t.f(\zeta)=\zeta\) - 只需证 \(f(x)\) 在 \([0,2\pi]\) 上成立即可
设 \(g(x)=f(x+\pi)-f(x)\),则 \(g(0)=f(\pi)-f(0),g(\pi)=f(2\pi)-f(\pi)=f(0)-f(\pi)=-g(0)\),所以 \(g(0)g(\pi) \le 0\),所以 \(\exists \zeta \in [0,\pi],s.t.g(\zeta)=0\),即 \(\exists \zeta \in [0,\pi],s.t. f(\zeta+\pi)=f(\zeta)\)
标签:mathbb,infty,le,exists,微积分,随缘,zeta,pi 来源: https://www.cnblogs.com/nekko/p/15420107.html