其他分享
首页 > 其他分享> > 笛卡尔树学习笔记

笛卡尔树学习笔记

作者:互联网

笛卡尔树本质是一种 \(treap\),可以线性构建,在构造数据下并不平衡
对于一个排列,其笛卡尔树 \(dfs\) 序为下标,其权值满足小(大)根性质
笛卡尔树可以很好地把序列问题转化为树上问题,其好处在于很方便地利用树上左右子树大小进行处理

笛卡尔树与数列的对应关系:


RMQ Similar Sequence

首先,根据前面的性质,比节点大的区间是子树大小
那么恰好相同的概率是 \(\displaystyle\frac{1}{\prod siz_i}\)
一个让人十分震惊的事情是节点的权值期望为 \(\frac{1}{2}\),于是总和的期望为 \(\frac{n}{2}\),于是这题就这样草率的完了


SPOJ PERIODNI

一个以前见过的笛卡尔树经典题,这个题中使用笛卡尔树的优势变得非常明显
首先由于题目中说纵向分隔是互不影响的,那么相当于可以像切片一样把序列分成一层一层的小矩形
比如样例,分成 \(5\times1\),\(2\times1\),\(1\times1\),\(2\times1\),以及 \(1\times2\) 的矩形即可
这样可以直接在高度上建立笛卡尔树
考虑笛卡尔树上 \(dp\),进行树形背包
设 \(f[i][j]\) 表示以 \(i\) 为根的子树内放置 \(j\) 个车的方案数
那么 \(f[u][i]=\sum f[v][j]\times f[u][i-j]\) 这个式子是背包常见形式
一个很关键的是在当前所划分出来的矩形里面放点的方案数
考虑在一个 \(a\times b\) 的矩形里放 \(k\) 个点的方案数为 \(\binom{i}{k}\binom{j}{k}k!\)
于是在自己做一遍 \(dp\)


Kcats

标签:矩形,frac,笛卡尔,times1,笔记,学习,树上,节点
来源: https://www.cnblogs.com/yang-cx/p/15404490.html