其他分享
首页 > 其他分享> > ROS-3DSLAM(二)lvi-sam项目认识

ROS-3DSLAM(二)lvi-sam项目认识

作者:互联网

2021SC@SDUSC

(二)lvi-sam项目认识

一、SLAM简介

SLAM是Simultaneous Localization and Mapping(同时定位 + 建图)。

独立的定位问题是建立在地图已知的情况下的,单独的建图问题也是建立在定位已知的情况下的。当机器人不能得到环境地图,也不知道自身位姿的时候,SLAM问题就出现了。也就是说SLAM要同时的进行机器人定位和建图,这个问题比单独的定位和单独的建图都要难得多。

SLAM算法分为在线SLAM和全SLAM问题。

在线SLAM的代表是EFK SLAM算法;全SLAM算法的代表是GraphSLAM。

EKF SLAM和GraphSLAM是两个极端。EKF SLAM需要取得每一时刻的信息,把信息分解为概率分布,计算代价很高。而GraphSLAM刚好相反,只是简单的积累每一时刻的信息并存储,然后进行离线推理计算开销较小,但是随着地图规模扩大,算法会消耗越来越多的内存直至崩溃。

有其他的SLAM算法结合了上述两种算法的优点,如SEIF SLAM、FastSLAM。SEIF SLAM算法继承了EKF SLAM信息表示的高效性,也保留了GraphSLAM计算代价小的优点,可以说SEIF SLAM是高效和可实现的SLAM算法;FastSLAM算法使用粒子滤波估计机器人的路径,基于FastSLAM的多个变种算法在机器人已经得到广泛的应用,比如gmapping等等。

现今在机器人上使用最广泛的应该算激光SLAM了,在扫地机器人、服务机器人、AGV智能车上普遍搭载了单线激光雷达SLAM算法,像无人驾驶汽车、户外机器人则普遍搭载了多线激光雷达SLAM。另一种热门的研究是视觉SLAM,视觉SLAM有配备单目、双目、深度相机的多种形态,并且根据采用视觉特征点的区别还有直接法、半直接法、稀疏法之分。然后还有就是各种复合式的SLAM算法比如激光与视觉融合的SLAM、融合了IMU的视觉SLAM。最后,就是一些最新颖的SLAM算法,比如用深度学习来做的端到端的SLAM、基于物体识别的语义SLAM。

二、lvi-sam项目简介

LVI-SAM是一个lidar-visual-inertial里程计和建图系统,在系统级别结合了LIO-SAM和Vins-Mono的优势。

LVI-SAM是一个紧耦合的雷达视觉惯导SLAM系统,可以实时高精度鲁棒的进行状态估计和建图。

LVI-SAM构建在因子图之上,并且由两个子系统组成:一个视觉惯导系统和一个激光惯导系统。这两个子系统利用紧耦合的方法,视觉惯导的系统利用激光惯导的估计来做初始化,利用激光雷达的测量给视觉特征提供深度来提升精度。同时激光惯导系统利用视觉惯导的估计值作为初值来做帧的匹配,利用视觉做闭环检测,把检测的结果给激光惯导系统来做优化。

当激光惯导和视觉惯导子系统的一个失败的时候LVI-SAM仍然可以工作,这极大的提升了系统在缺少纹理或者特征场景中的鲁棒性。LVI-SAM系统在数据集上进行了测试,取得了很好的效果。

LIV-SAM项目是一种新型的复合式的SLAM算法,较好的实现了激光雷达+视觉+惯性导航融合,我们将首先围绕该项目进行3D-SLAM的学习。

项目包:

请添加图片描述

LIV-SAM的安装和运行在之前的工作中已经完成,以下是运行作者提供的数据包的截图:

请添加图片描述

三、lvi-sam论文阅读

介绍

单纯基于雷达或者视觉的SLAM系统都有自己的局限性,因此激光和视觉经常和惯导融合来提升他们的精度和鲁棒性。

在这里插入图片描述

整个项目分为3个输入端:雷达端(3D激光点云)、视觉端(单目图像)、IMU输入惯性测量值;2个可独立工作、也可耦合的子系统:雷达惯性系统和视觉惯性系统。

不懂的知识点:

https://blog.csdn.net/u013626386/article/details/70596656

完整的激光视觉惯导SLAM系统

A. 系统概述

VIS系统接收参数:图像和IMU信息,雷达点云是可选的输入。

视觉里程计:通过最小化IMU和视觉的测量残差来得到。

激光里程计:通过最小化检测到的线面特征到特征图的距离得到。

状态估计问题

不懂的知识点:

B. 视觉惯导系统

在这里插入图片描述

由上到下。

状态X:
x = [ R , p , v , b ] x = [R, p, v, b] x=[R,p,v,b]

VIS的初始化和特征深度估计:

1)初始化:基于优化的VIO系统,为了改善VIS初始化的鲁棒性,我们利用LIS系统来估计系统的状态X和IMU的偏置b(初始化LIS系统获得x和b。然后通过插值来把激光帧和视觉帧通过时间戳对齐,最后把LIS系统初始化得到的x和b作为VIS初始值)。

2)深度特征关联:根据VIS初始化的结果,利用视觉里程计对齐视觉帧和雷达帧。

原理:

在这里插入图片描述

特征深度是虚线的长度。

在这里插入图片描述

(a)( c)中的颜色变化代表深度变化;(b)(d)中,绿色点是成功与深度关联的视觉特征,红色是失败的。

3)失败检测:如果运动变化剧烈,光照变化或者环境缺少纹理就会导致VIS系统失败。这是由于在这种场景中跟踪的特征点会显著减少,而特征太少会导致优化失败。

一旦检测到故障,VIS将重新初始化并通知LIS。

4)闭环检测:利用DBoW2来做闭环检测。

不懂的知识点:

C.雷达惯导系统

利用因子图来做全局的位姿优化。

在这里插入图片描述

主要有四种约束,IMU的预积分约束,视觉里程计的约束,雷达里程计的约束和闭环检测的约束加入到因子图中参与优化。

1)初始值估计

2)失败检测

不懂的知识点:

总结

在阅读完正片论文并查询了相关词汇和知识点后,对整个项目的机制有了初步的了解。但是文中很多专业知识可以说是完全没有接触过,如果从头完全学起压力会非常大。

所以接下来的学习将围绕代码分析展开,在代码分析的同时对其中体现出的专业知识进行相关学习。

参考资料见博客中引用的网址。

标签:sam,3DSLAM,里程计,算法,SLAM,https,惯导,视觉,ROS
来源: https://blog.csdn.net/qq_38170211/article/details/120688352