高斯分布和马氏距离
作者:互联网
高斯分布
x
∈
R
p
x\in \mathbb{R}^p
x∈Rp
x
∼
N
(
μ
,
∑
)
=
1
(
2
π
)
p
2
∣
Σ
∣
1
2
e
x
p
(
−
1
2
(
x
−
μ
)
T
Σ
−
1
(
x
−
μ
)
)
x\sim N(\mu,\sum)=\frac{1}{(2\pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}}}exp(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu))
x∼N(μ,∑)=(2π)2p∣Σ∣211exp(−21(x−μ)TΣ−1(x−μ))
(
X
−
μ
)
T
Σ
−
1
(
X
−
μ
)
(X-\mu)^T\Sigma^{-1}(X-\mu)
(X−μ)TΣ−1(X−μ)为x与
μ
\mu
μ之间的马氏距离
当
Σ
=
I
\Sigma=I
Σ=I时,马氏距离=欧式距离
将
Σ
\Sigma
Σ进行特征值分解
Σ
=
U
Λ
U
T
,
U
U
T
=
U
T
U
=
I
\Sigma=U\Lambda U^T,UU^T=U^TU=I
Σ=UΛUT,UUT=UTU=I
Σ
−
1
=
∑
i
=
1
p
u
i
1
λ
i
u
i
T
\Sigma^{-1}=\sum_{i=1}^{p}u_i\frac{1}{\lambda_i}u_i^T
Σ−1=∑i=1puiλi1uiT
令
y
i
=
(
x
−
μ
)
T
u
i
y_i=(x-\mu)^Tu_i
yi=(x−μ)Tui
马氏距离
Δ
=
(
x
−
μ
)
T
Σ
−
1
(
x
−
μ
)
=
∑
i
=
1
p
(
x
−
μ
)
T
u
i
1
λ
i
u
i
T
(
x
−
μ
)
=
∑
i
=
1
p
y
i
2
λ
i
\Delta=(x-\mu)^T\Sigma^{-1}(x-\mu)=\sum_{i=1}^{p}(x-\mu)^Tu_i\frac{1}{\lambda_i}u_i^T(x-\mu)=\sum_{i=1}^{p}\frac{y_i^2}{\lambda_i}
Δ=(x−μ)TΣ−1(x−μ)=∑i=1p(x−μ)Tuiλi1uiT(x−μ)=∑i=1pλiyi2
标签:1p,frac,马氏,sum,距离,mu,Sigma,高斯分布 来源: https://blog.csdn.net/qq_44290978/article/details/120360492