数据结构|拓扑排序
作者:互联网
拓扑排序
限定:有向无环图
①从DAG图中选择入度为0的顶点,并输出
②从图中删除该入度为0的顶点以及所有以它为起点的边
③重复①和②直到当前图为空,或者图不存在入度为0的顶点。前者输出的序列就是拓扑序列,后者说明图中有环,不存在拓扑序列
典型例题
判断能否构成有向无环图
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int MAXN = 500;
vector<int> graph[MAXN];
int inDegree[MAXN];//入度
bool TopologicalSort(int n) {
queue<int> node;
for (int i = 0; i < n; i++) {
if (inDegree[i] == 0) node.push(i);
}
int number = 0;//拓扑序列顶点个数
while (!node.empty()) {
int u = node.front();
node.pop();
number++;//拓扑序列顶点加1
for (int i = 0; i < graph[u].size(); i++) {
int v = graph[u][i];
inDegree[v]--;//后续顶点入度减1
if (inDegree[v] == 0) node.push(v);
}
}
return n == number;//判断能否产生拓扑序列
}
int main() {
int n, m;
while (scanf("%d%d", &n, &m) != EOF) {
if (n == 0 && m == 0) break;
memset(graph, 0, sizeof(graph));//初始化图
memset(inDegree, 0, sizeof(inDegree));//初始化入度
while (m--) {
int from, to;
scanf("%d%d", &from, &to);
graph[from].push_back(to);//注意只有一边
inDegree[to]++;
}
if (TopologicalSort(n)) printf("YES\n");
else printf("No\n");
}
return 0;
}
确定比赛名次
第一行N队伍数目、M 接下来的M行P1、P2表示P1赢了P2。确定排名先后,当符合条件的排名不唯一时,要求输出编号小的队伍在前
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int MAXN = 501;
vector<int> graph[MAXN];
int inDegree[MAXN];// 入度
vector<int> TopologicalSort(int n) {//拓扑排序
vector<int> topology;//拓扑序列
priority_queue<int, vector<int>, greater<int>> node;//定义优先序列(需要输出编号小的在前的序列)
for (int i = 1; i <= n; i++) {
if (inDegree[i] == 0) node.push(i);
}
while (!node.empty()) {
int u = node.top();
node.pop();
topology.push_back(u);//加入拓扑序列
for (int i = 0; i < graph[u].size(); i++) {
int v = graph[u][i];
inDegree[v]--;//后继结点入度减1
if (inDegree[v] == 0) node.push(v);
}
}
return topology;//返回拓扑序列
}
int main() {
int n, m;
while (scanf("%d%d", &n, &m) != EOF) {
memset(graph, 0, sizeof(graph));
memset(inDegree, 0, sizeof(inDegree));
while (m--) {
int from, to;
scanf("%d%d", &from, &to);
graph[from].push_back(to);
inDegree[to]++;
}
vector<int> answer = TopologicalSort(n);
for (int i = 0; i < answer.size(); i++) {
if (i == 0) printf("%d", answer[i]);
else printf(" %d", answer[i]);
}
printf("\n");
}
return 0;
}
标签:node,排序,int,inDegree,拓扑,include,graph,数据结构 来源: https://blog.csdn.net/weixin_43340821/article/details/119303933