cube.js prometheus 监控
作者:互联网
这个问题是slack 中有人问到的,同时也是社区提的比较多的,基于prometheus 的监控方案是一个很不错的选择
因为cube.js 是基于express 开发的,同时官方也提供了插件扩展点的方法,我们可以直接使用现成的prometheus
express 扩展
参考配置
- prometheus 模块
//const shrinkRay = require('shrink-ray-current');
const promMid = require('express-prometheus-middleware');
module.exports = function (app) {
if (process.env.NODE_ENV == "production") {
app.get("/", function (req, res) {
res.send("oneservice api")
})
}
// always use zip
// app.use(shrinkRay())
app.use(promMid({
metricsPath: '/metrics',
collectDefaultMetrics: true,
requestDurationBuckets: [0.1, 0.5, 1, 1.5],
requestLengthBuckets: [512, 1024, 5120, 10240, 51200, 102400],
responseLengthBuckets: [512, 1024, 5120, 10240, 51200, 102400],
}));
}
- cube.js 使用插件
// Cube.js configuration options: https://cube.dev/docs/config
const { DremioDriver, DremioQuery } = require("@dalongrong/mydremio-driver")
const MyS3FileRepository = require("@dalongrong/cube-s3repository")
const { schemaVersion, checkAuth, homePage } = require('./libs/oneserviceapi')
const logger = require("./libs/logger")
const cubeConf = require("./libs/cubeConf")
module.exports = {
basePath: "/oneserviceapi/:projectid",
schemaVersion: schemaVersion,
dialectFactory: (dataSource) => {
return DremioQuery
},
orchestratorOptions: cubeConf.orchestratorOptions,
logger: (msg, params) => {
if (process.env.NODE_ENV == "production") {
logger.log({
level: 'info',
message: `${JSON.stringify({ msg, ...params })}`
});
} else {
console.log(`${JSON.stringify({ msg, ...params })}`)
}
},
telemetry: false,
dbType: ({ dataSource } = {}) => {
return "mydremio"
},
driverFactory: ({ dataSource } = {}) => {
return new DremioDriver({})
},
repositoryFactory: ({ securityContext }) => {
return new MyS3FileRepository.S3FileRepository({
objectPrefix: securityContext.projectId,
bucket: securityContext.tenantId,
})
},
queryRewrite: (query, { securityContext }) => {
return query;
},
checkAuth: checkAuth,
contextToAppId: ({ securityContext }) => {
return `ONESERVICEAPP_${securityContext.projectId}`
},
initApp: homePage
};
- prometheus 环境准备
version: "3"
services:
grafana:
image: grafana/grafana
ports:
- "3000:3000"
prometheus:
image: prom/prometheus
volumes:
- "./prometheus.yml:/etc/prometheus/prometheus.yml"
ports:
- "9090:9090"
prometheus.yml
scrape_configs:
- job_name: cubejs
metrics_path: /metrics
scrape_interval: 10s
scrape_timeout: 10s
static_configs:
- targets: ['<hostip>:4000']
效果
- 启动
yarn dev
- 效果
监控
说明
以上是一个简单的集成,实际上还是很简单的,而且可以方便的解决我们日常系统监控的问题,注意对于集群模式的(node cluster )监控指标会有问题,但是也是可以凑合能用
参考资料
https://www.npmjs.com/package/express-prometheus-middleware
https://www.npmjs.com/package/prometheus-api-metrics
https://grafana.com/grafana/dashboards/14565
https://grafana.com/grafana/dashboards/12230
标签:cube,const,require,grafana,prometheus,return,js,securityContext 来源: https://www.cnblogs.com/rongfengliang/p/15021718.html