UVA11255 Necklace Burnside、组合
作者:互联网
因为有每种颜色个数的限制,所以不能使用Polya
考虑退一步,使用Burnside引理求解
回忆一下Burnside引理,它需要求的是置换群中每一个置换的不动点个数,也就是施加一次置换之后新状态与原状态相同的状态个数。而施加一次置换之后状态不变的充要条件是:对于这个置换中的每一个循环,循环中所有位置的颜色都相同。
为了叙述方便,约定\(f(i,j,k,l) = \frac{i!}{j!k!l!}\)
首先考虑旋转。假设某一种旋转置换使得\(i\)位置的珠子变到\(i+k\)位置\((k \in [1,N] , N = a+b+c)\),不难知道这个置换是由\(gcd(N,k)\)个\(\frac{N}{gcd(N,k)}\)阶循环构成的。
假设\(\frac{N}{gcd(N,k)} | a\ \&\&\ \frac{N}{gcd(N,k)} | b\ \&\&\ \frac{N}{gcd(N,k)} | c\)(如果这个条件不成立显然没有方案),那么这\(gcd(N,k)\)个循环中有\(\frac{a}{\frac{N}{gcd(N,k)}}\)个是全白色,\(\frac{b}{\frac{N}{gcd(N,k)}}\)个是全灰色,\(\frac{c}{\frac{N}{gcd(N,k)}}\)个是全黑色,这是一个本质不同的可重排列计数问题,染色方案有\(f(gcd(N,k) , \frac{a}{\frac{N}{gcd(N,k)}} ,\frac{b}{\frac{N}{gcd(N,k)}}, \frac{c}{\frac{N}{gcd(N,k)}})\)种
接着考虑翻转。这里需要分类讨论一下:
①\(2 \not\mid N\),意味着所有的轴会且只会经过一个珠子。在这种情况下,总共有\(N\)种翻转置换,每一个置换都是由\(1\)个\(1\)阶循环和\(\frac{N-1}{2}\)个\(2\)阶循环组成。枚举这一个\(1\)阶循环的颜色,那么不动点个数为\((f(\frac{N - 1}{2} , \frac{a - 1}{2} , \frac{b}{2} , \frac{c}{2}) + f(\frac{N - 1}{2} , \frac{a}{2} , \frac{b - 1}{2} , \frac{c}{2}) + f(\frac{N - 1}{2} , \frac{a}{2} , \frac{b}{2} , \frac{c - 1}{2}) ) \times N\)
②\(2 | N\),意味着有\(\frac{N}{2}\)个轴不经过珠子,有\(\frac{N}{2}\)个对称轴经过\(2\)个珠子,跟上面一样枚举\(1\)阶循环的颜色计算答案,式子太长不想写了留给读者自行思考
还有这道题似乎要写高精
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<ctime>
#include<cctype>
#include<algorithm>
#include<cstring>
#include<iomanip>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<vector>
#include<cmath>
//This code is written by Itst
using namespace std;
inline int read(){
int a = 0;
char c = getchar();
bool f = 0;
while(!isdigit(c) && c != EOF){
if(c == '-')
f = 1;
c = getchar();
}
if(c == EOF)
exit(0);
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return f ? -a : a;
}
struct Bignum{
int a[107];
int& operator [](int x){return a[x];}
Bignum(int b = 0){
memset(a , 0 , sizeof(a));
a[0] = 0;
while(b){
a[++a[0]] = b % 10;
b /= 10;
}
}
Bignum operator =(int b){
return *this = Bignum(b);
}
void input(){
string s;
cin >> s;
a[0] = s.size();
for(int i = 1 ; i <= a[0] ; ++i)
a[i] = s[s.size() - i] - '0';
}
void output(){
if(!a[0])
putchar('0');
for(int i = a[0] ; i ; --i)
putchar(a[i] + '0');
putchar('\n');
}
Bignum operator +(Bignum b){
Bignum c;
c[0] = max(a[0] , b[0]);
for(int i = 1 ; i <= c[0] ; ++i)
if((c[i] += a[i] + b[i]) >= 10){
c[i] -= 10;
++c[i + 1];
}
if(c[c[0] + 1])
++c[0];
return c;
}
Bignum operator +=(Bignum b){
return *this = *this + b;
}
Bignum operator -(Bignum b){
Bignum c;
c[0] = max(a[0] , b[0]);
for(int i = 1 ; i <= c[0] ; ++i)
if((c[i] += a[i] - b[i]) < 0){
c[i] += 10;
--c[i + 1];
}
while(c[0] && !c[c[0]])
--c[0];
return c;
}
Bignum operator -=(Bignum b){
return *this = *this - b;
}
Bignum operator *(Bignum b){
if(!b[0])
return b;
Bignum c;
c[0] = a[0] + b[0] - 1;
for(int i = 1 ; i <= a[0] ; ++i)
for(int j = 1 ; j <= b[0] ; ++j)
c[i + j - 1] += a[i] * b[j];
for(int i = 1 ; i <= c[0] ; ++i)
if(c[i] >= 10){
c[i + 1] += c[i] / 10;
c[i] %= 10;
if(i == c[0])
++c[0];
}
while(c[0] && !c[c[0]])
--c[0];
return c;
}
Bignum operator *=(Bignum b){
return *this = *this * b;
}
Bignum operator ^(int a){
Bignum times(1) , b(*this);
while(a){
if(a & 1)
times *= b;
b *= b;
a >>= 1;
}
return times;
}
bool operator >(Bignum b)const{
if(a[0] > b[0])
return 1;
if(a[0] < b[0])
return 0;
for(int i = a[0] ; i ; --i)
if(a[i] > b[i])
return 1;
else
if(a[i] < b[i])
return 0;
return 0;
}
bool operator >= (Bignum b){
if(a[0] > b[0])
return 1;
if(a[0] < b[0])
return 0;
for(int i = a[0] ; i ; --i)
if(a[i] > b[i])
return 1;
else
if(a[i] < b[i])
return 0;
return 1;
}
Bignum operator /(Bignum b){
Bignum c , d = *this , e;
c[0] = a[0] - b[0] + 1;
for(int i = c[0] ; i ; --i){
e = b * (Bignum(10) ^ (i - 1));
for(int j = 1 ; j <= 10 ; ++j)
if((e * j) > d){
d -= e * (j - 1);
c[i] = j - 1;
break;
}
}
while(c[0] && !c[c[0]])
--c[0];
return c;
}
Bignum operator /=(Bignum b){
return *this = *this / b;
}
Bignum operator %(Bignum b){
return *this - *this / b * b;
}
Bignum operator %=(Bignum b){
return *this = *this % b;
}
}jc[41];
int a , b , c , N;
Bignum ans;
inline int gcd(int a , int b){
int r = a % b;
while(r){
a = b;
b = r;
r = a % b;
}
return b;
}
inline Bignum calc(int x , int a , int b , int c){
if(a % x || b % x || c % x || a < 0 || b < 0 || c < 0)
return 0;
int N = a + b + c;
return jc[N / x] / jc[a / x] / jc[b / x] / jc[c / x];
}
int main(){
#ifndef ONLINE_JUDGE
//freopen("in","r",stdin);
freopen("out","w",stdout);
#endif
jc[0] = 1;
for(int i = 1 ; i <= 40 ; ++i)
jc[i] = jc[i - 1] * i;
for(int T = read() ; T ; --T){
ans = 0;
a = read();
b = read();
c = read();
N = a + b + c;
for(int i = 1 ; i <= N ; ++i)
ans += calc(N / gcd(i , N) , a , b , c);
if(N & 1)
ans += (calc(2 , a - 1 , b , c) + calc(2 , a , b - 1 , c) + calc(2 , a , b , c - 1)) * N;
else
ans += (calc(2 , a , b , c) + calc(2 , a - 1 , b - 1 , c) + calc(2 , a - 1 , b , c - 1) + calc(2 , a , b - 1 , c - 1)) * N;
ans = ans / (2 * N);
ans.output();
}
return 0;
}
标签:frac,gcd,int,return,Necklace,UVA11255,Bignum,Burnside,include 来源: https://www.cnblogs.com/Itst/p/10340883.html