首页 > TAG信息列表 > LOSSES
5-5损失函数losses——eat_tensorflow2_in_30_days
5-5损失函数losses 一般来说,监督学习的目标函数由损失函数和正则化项组成。(Objective = Loss + Regularization) 对于keras模型,目标函数中的正则化项一般在各层中指定,例如使用Dense的 kernel_regularizer 和 bias_regularizer等参数指定权重使用l1或者l2正则化项,此外还可以用kerneThe balance sheet of KriBank starts with an allowance for loan losses of $2.66 million. During the y
The balance sheet of KriBank starts with an allowance for loan losses of $2.66 million. During the year, KriBank writes-off worthless loans amounting to $1.68 million, recovers $0.44 million on loans previously written off, and charges current income for获得更好的训练结果的实用技巧
Tips for Best Training Results Glenn Jocher edited this page on Sep 10 · 14 revisions Pages 6 Clone this wiki locally【算法检验】StepM和MSC
继上节SPA继续介绍StepM和MSC检验 【算法检验】SPA_Checkmate9949的博客-CSDN博客一、概念The multiple comparison procedures all allow for examining aspects of superior predictive ability.用于检验更优的预测能力There are three available:SPA - The test of Superior基于Pytorch1.8.0+Win10+RTX3070的MNIST网络构建与训练
直接上代码 先上整个的代码 import torch import torchvision from torch.utils.data import DataLoader import matplotlib.pyplot as plt import torch.nn as nn import torch.nn.functional as F import torch.optim as optim # 参考:https://blog.csdn.net/sxf106170062Deep Learning for Person Re-identification: A Survey and Outlook
贡献 总结了245篇近年的reid顶会论文提出了一个新的baseling:AGWmINP:本文提出的新的reid评价标准。 贡献一分析 参考: https://blog.csdn.net/rytyy/article/details/105232594https://blog.csdn.net/qq_41967539/article/details/107268994https://zhuanlan.zhihu.com/p/342tensorflow2.x学习笔记八:tensorflow(keras)损失函数之交叉熵
下面都是我自己的一些简单的总结,如果有错误的地方,还请大家指出来。 一、BinaryCrossentropy类和binary_crossentropy函数 BinaryCrossentropy类的使用: tf.keras.losses.BinaryCrossentropy( from_logits=False, label_smoothing=0, reduction=losses_utils.Reductio吴裕雄--天生自然TensorFlow2教程:误差计算
import tensorflow as tf y = tf.constant([1, 2, 3, 0, 2]) y = tf.one_hot(y, depth=4) # max_label=3种 y = tf.cast(y, dtype=tf.float32) out = tf.random.normal([5, 4]) out loss1 = tf.reduce_mean(tf.square(y - out)) loss1 loss2 = tf.square(tf.norm(y - ou