吴裕雄--天生自然TensorFlow2教程:误差计算
作者:互联网
import tensorflow as tf y = tf.constant([1, 2, 3, 0, 2]) y = tf.one_hot(y, depth=4) # max_label=3种 y = tf.cast(y, dtype=tf.float32) out = tf.random.normal([5, 4]) out
loss1 = tf.reduce_mean(tf.square(y - out)) loss1
loss2 = tf.square(tf.norm(y - out)) / (5 * 4) loss2
loss3 = tf.reduce_mean(tf.losses.MSE(y, out)) loss3
a = tf.fill([4], 0.25) a * tf.math.log(a) / tf.math.log(2.)
-tf.reduce_sum(a * tf.math.log(a) / tf.math.log(2.))
a = tf.constant([0.1, 0.1, 0.1, 0.7]) -tf.reduce_sum(a * tf.math.log(a) / tf.math.log(2.))
a = tf.constant([0.01, 0.01, 0.01, 0.97]) -tf.reduce_sum(a * tf.math.log(a) / tf.math.log(2.))
tf.losses.categorical_crossentropy([0, 1, 0, 0], [0.25, 0.25, 0.25, 0.25])
tf.losses.categorical_crossentropy([0, 1, 0, 0], [0.1, 0.1, 0.8, 0.1])
tf.losses.categorical_crossentropy([0, 1, 0, 0], [0.1, 0.7, 0.1, 0.1])
tf.losses.categorical_crossentropy([0, 1, 0, 0], [0.01, 0.97, 0.01, 0.01])
tf.losses.BinaryCrossentropy()([1],[0.1])
tf.losses.binary_crossentropy([1],[0.1])
标签:TensorFlow2,教程,0.01,log,0.1,losses,tf,吴裕雄,math 来源: https://www.cnblogs.com/tszr/p/12221514.html