编程语言
首页 > 编程语言> > 基于C++的OpenGL 07 之颜色

基于C++的OpenGL 07 之颜色

作者:互联网

1. 引言

本文基于C++语言,描述OpenGL的颜色

前置知识可参考:

笔者这里不过多描述每个名词、函数和细节,更详细的文档可以参考:

2. 概述

OpenGL中颜色通常数字化为RGB三个通道,根据光的反射定律,一个不透明的物体颜色为:

\[RGB_{result} = RGB_{light} \cdot RGB_{object} \]

即,光源颜色与物体颜色相乘就是物体反射的颜色,也就是被看到的颜色

3. 编码

在片段着色器的GLSL中可以简单地实现颜色反射

白色光源照到黄色物体:

FragColor = vec4(vec3(1.0f, 1.0f, 1.0f)*vec3(1.0f, 1.0f, 0.0f), 1.0);

物体反射颜色为黄色:

image-20220811214955133

蓝绿色光源照到黄色物体:

FragColor = vec4(vec3(0.0f, 1.0f, 1.0f)*vec3(1.0f, 1.0f, 0.0f), 1.0);

物体反射颜色为绿色:

image-20220811214908971

4. 创建光照场景

生成顶点数据与链接顶点属性,这里使用的是之前立方体的顶点数据

unsigned int lightVAO;
glGenVertexArrays(1, &lightVAO);
glBindVertexArray(lightVAO);
// 只需要绑定VBO不用再次设置VBO的数据,因为箱子的VBO数据中已经包含了正确的立方体顶点数据
glBindBuffer(GL_ARRAY_BUFFER, VBO);
// 设置灯立方体的顶点属性(对我们的灯来说仅仅只有位置数据)
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);

编写顶点着色器GLSL:

#version 330 core
layout (location = 0) in vec3 aPos;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    gl_Position = projection * view * model * vec4(aPos, 1.0);
}

编写片段着色器GLSL:

#version 330 core
out vec4 FragColor;

void main()
{
    FragColor = vec4(1.0); // 将向量的四个分量全部设置为1.0
}

生成着色器并链接着色器程序:

Shader lightCubeShader("light_cube.vs.glsl", "light_cube.fs.glsl");
...
lightCubeShader.use();
// 设置模型、视图和投影矩阵uniform
...
// 绘制灯立方体对象
glBindVertexArray(lightVAO);
glDrawArrays(GL_TRIANGLES, 0, 36);

至此,光源已经完成

对于原来的立方体,给其加上光源和物体颜色

在立方体的片段着色器GLSL中:

#version 330 core
out vec4 FragColor;

uniform vec3 objectColor;
uniform vec3 lightColor;

void main()
{
    FragColor = vec4(lightColor * objectColor, 1.0);
}

向GPU传输数据:

Shader lightingShader("colors.vs.glsl", "colors.fs.glsl");
...
// 在此之前不要忘记首先 use 对应的着色器程序(来设定uniform)
lightingShader.use();
lightingShader.setVec3("objectColor", 1.0f, 0.5f, 0.31f);
lightingShader.setVec3("lightColor",  1.0f, 1.0f, 1.0f);

创建后的光照场景如下图:

image-20220811233424187

5. 完整代码

创建光照场景完整代码如下:

#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <iostream>
#include <math.h>
#include "Shader.hpp"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#include <glm/glm.hpp>
#include <glm/ext/matrix_transform.hpp>  // glm::translate, glm::rotate, glm::scale
#include <glm/ext/matrix_clip_space.hpp> // glm::perspective
#include <glm/gtc/type_ptr.hpp>

//全局变量
glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 10.0f);
glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f);
glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f);
glm::vec3 lightPos(1.2f, 1.0f, 2.0f);

// 函数声明
void framebuffer_size_callback(GLFWwindow *window, int width, int height);
void process_input(GLFWwindow *window);


int main()
{
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    GLFWwindow *window = glfwCreateWindow(800, 600, "color", nullptr, nullptr);

    if (window == nullptr)
    {
        std::cout << "Faild to create window" << std::endl;
        glfwTerminate();
    }
    glfwMakeContextCurrent(window);

    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Faild to initialize glad" << std::endl;
        return -1;
    }
    glad_glViewport(0, 0, 800, 600);
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);

    //配置项
    glEnable(GL_DEPTH_TEST);

    Shader lightCubeShader("../light_cube.vs.glsl", "../light_cube.fs.glsl");
    Shader lightingShader("../colors.vs.glsl", "../colors.fs.glsl");

    unsigned int cubeVAO;
    glGenVertexArrays(1, &cubeVAO);
    glBindVertexArray(cubeVAO);

    float vertices[] = {
        -0.5f, -0.5f, -0.5f, 
         0.5f, -0.5f, -0.5f,  
         0.5f,  0.5f, -0.5f,  
         0.5f,  0.5f, -0.5f,  
        -0.5f,  0.5f, -0.5f, 
        -0.5f, -0.5f, -0.5f, 

        -0.5f, -0.5f,  0.5f, 
         0.5f, -0.5f,  0.5f,  
         0.5f,  0.5f,  0.5f,  
         0.5f,  0.5f,  0.5f,  
        -0.5f,  0.5f,  0.5f, 
        -0.5f, -0.5f,  0.5f, 

        -0.5f,  0.5f,  0.5f, 
        -0.5f,  0.5f, -0.5f, 
        -0.5f, -0.5f, -0.5f, 
        -0.5f, -0.5f, -0.5f, 
        -0.5f, -0.5f,  0.5f, 
        -0.5f,  0.5f,  0.5f, 

         0.5f,  0.5f,  0.5f,  
         0.5f,  0.5f, -0.5f,  
         0.5f, -0.5f, -0.5f,  
         0.5f, -0.5f, -0.5f,  
         0.5f, -0.5f,  0.5f,  
         0.5f,  0.5f,  0.5f,  

        -0.5f, -0.5f, -0.5f, 
         0.5f, -0.5f, -0.5f,  
         0.5f, -0.5f,  0.5f,  
         0.5f, -0.5f,  0.5f,  
        -0.5f, -0.5f,  0.5f, 
        -0.5f, -0.5f, -0.5f, 

        -0.5f,  0.5f, -0.5f, 
         0.5f,  0.5f, -0.5f,  
         0.5f,  0.5f,  0.5f,  
         0.5f,  0.5f,  0.5f,  
        -0.5f,  0.5f,  0.5f, 
        -0.5f,  0.5f, -0.5f, 
    };
    unsigned int VBO;
    glGenBuffers(1, &VBO);
    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void *)0);
    glEnableVertexAttribArray(0);

    unsigned int lightCubeVAO;
    glGenVertexArrays(1, &lightCubeVAO);
    glBindVertexArray(lightCubeVAO);
    // 只需要绑定VBO不用再次设置VBO的数据,因为箱子的VBO数据中已经包含了正确的立方体顶点数据
    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    // 设置灯立方体的顶点属性(对我们的灯来说仅仅只有位置数据)
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);


    while (!glfwWindowShouldClose(window))
    {
        process_input(window);

        glClearColor(0.0, 0.0, 0.0, 1.0);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        lightingShader.use();
        lightingShader.setVec3("objectColor", 1.0f, 0.5f, 0.31f);
        lightingShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f);
        glm::mat4 model = glm::mat4(1.0f);
        model = glm::rotate(model, glm::radians(-55.0f), glm::vec3(1.0f, 0.0f, 0.0f));

        glm::mat4 view = glm::mat4(1.0f);
        // view = glm::translate(view, glm::vec3(0.0f, 0.0f, -3.0f));
        view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp);

        glm::mat4 projection = glm::mat4(1.0f);
        projection = glm::perspective(glm::radians(45.0f), 800.0f / 600.0f, 0.1f, 100.0f);

        // 模型矩阵
        int modelLoc = glGetUniformLocation(lightingShader.ID, "model");
        glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
        // 观察矩阵和投影矩阵与之类似
        int viewLoc = glGetUniformLocation(lightingShader.ID, "view");
        glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
        int projectionLoc = glGetUniformLocation(lightingShader.ID, "projection");
        glUniformMatrix4fv(projectionLoc, 1, GL_FALSE, glm::value_ptr(projection));

        // render the cube
        glBindVertexArray(cubeVAO);
        glDrawArrays(GL_TRIANGLES, 0, 36);

        // also draw the lamp object
        lightCubeShader.use();
        lightCubeShader.setMat4("projection", projection);
        lightCubeShader.setMat4("view", view);
        model = glm::mat4(1.0f);
        model = glm::translate(model, lightPos);
        model = glm::scale(model, glm::vec3(0.2f)); // a smaller cube
        lightCubeShader.setMat4("model", model);

        glBindVertexArray(lightCubeVAO);
        glDrawArrays(GL_TRIANGLES, 0, 36);

        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    glfwTerminate();
    return 0;
}

void framebuffer_size_callback(GLFWwindow *window, int width, int height)
{
    glViewport(0, 0, width, height);
}

void process_input(GLFWwindow *window)
{
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
    {
        glfwSetWindowShouldClose(window, true);
    }
    float cameraSpeed = 0.05f; // adjust accordingly
    if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
        cameraPos += cameraSpeed * cameraFront;
    if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
        cameraPos -= cameraSpeed * cameraFront;
    if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
        cameraPos -= glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
    if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
        cameraPos += glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
}

立方体顶点着色器GLSLcolors.vs.glsl

#version 330 core
layout (location = 0) in vec3 aPos;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    gl_Position = projection * view * model * vec4(aPos, 1.0);
}

立方体片段着色器GLSLcolors.fs.glsl

#version 330 core
out vec4 FragColor;

uniform vec3 objectColor;
uniform vec3 lightColor;

void main()
{
    FragColor = vec4(lightColor * objectColor, 1.0);
}

光源顶点着色器GLSLlight_cube.vs.glsl

#version 330 core
layout (location = 0) in vec3 aPos;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    gl_Position = projection * view * model * vec4(aPos, 1.0);
}

光源片段着色器GLSLlight_cube.fs.glsl

#version 330 core
out vec4 FragColor;

void main()
{
    FragColor = vec4(1.0); // 将向量的四个分量全部设置为1.0
}

着色器Shader.hpp

#ifndef SHADER_HPP
#define SHADER_HPP

#include <glad/glad.h>
#include <glm/glm.hpp>

#include <string>
#include <fstream>
#include <sstream>
#include <iostream>

class Shader
{
public:
    unsigned int ID;
    // constructor generates the shader on the fly
    // ------------------------------------------------------------------------
    Shader(const char* vertexPath, const char* fragmentPath)
    {
        // 1. retrieve the vertex/fragment source code from filePath
        std::string vertexCode;
        std::string fragmentCode;
        std::ifstream vShaderFile;
        std::ifstream fShaderFile;
        // ensure ifstream objects can throw exceptions:
        vShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit);
        fShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit);
        try 
        {
            // open files
            vShaderFile.open(vertexPath);
            fShaderFile.open(fragmentPath);
            std::stringstream vShaderStream, fShaderStream;
            // read file's buffer contents into streams
            vShaderStream << vShaderFile.rdbuf();
            fShaderStream << fShaderFile.rdbuf();		
            // close file handlers
            vShaderFile.close();
            fShaderFile.close();
            // convert stream into string
            vertexCode = vShaderStream.str();
            fragmentCode = fShaderStream.str();			
        }
        catch (std::ifstream::failure& e)
        {
            std::cout << "ERROR::SHADER::FILE_NOT_SUCCESFULLY_READ: " << e.what() << std::endl;
        }
        const char* vShaderCode = vertexCode.c_str();
        const char * fShaderCode = fragmentCode.c_str();
        // 2. compile shaders
        unsigned int vertex, fragment;
        // vertex shader
        vertex = glCreateShader(GL_VERTEX_SHADER);
        glShaderSource(vertex, 1, &vShaderCode, NULL);
        glCompileShader(vertex);
        checkCompileErrors(vertex, "VERTEX");
        // fragment Shader
        fragment = glCreateShader(GL_FRAGMENT_SHADER);
        glShaderSource(fragment, 1, &fShaderCode, NULL);
        glCompileShader(fragment);
        checkCompileErrors(fragment, "FRAGMENT");
        // shader Program
        ID = glCreateProgram();
        glAttachShader(ID, vertex);
        glAttachShader(ID, fragment);
        glLinkProgram(ID);
        checkCompileErrors(ID, "PROGRAM");
        // delete the shaders as they're linked into our program now and no longer necessery
        glDeleteShader(vertex);
        glDeleteShader(fragment);

    }
    // activate the shader
    // ------------------------------------------------------------------------
    void use() const
    { 
        glUseProgram(ID); 
    }
    // utility uniform functions
    // ------------------------------------------------------------------------
    void setBool(const std::string &name, bool value) const
    {         
        glUniform1i(glGetUniformLocation(ID, name.c_str()), (int)value); 
    }
    // ------------------------------------------------------------------------
    void setInt(const std::string &name, int value) const
    { 
        glUniform1i(glGetUniformLocation(ID, name.c_str()), value); 
    }
    // ------------------------------------------------------------------------
    void setFloat(const std::string &name, float value) const
    { 
        glUniform1f(glGetUniformLocation(ID, name.c_str()), value); 
    }
    // ------------------------------------------------------------------------
    void setVec2(const std::string &name, const glm::vec2 &value) const
    { 
        glUniform2fv(glGetUniformLocation(ID, name.c_str()), 1, &value[0]); 
    }
    void setVec2(const std::string &name, float x, float y) const
    { 
        glUniform2f(glGetUniformLocation(ID, name.c_str()), x, y); 
    }
    // ------------------------------------------------------------------------
    void setVec3(const std::string &name, const glm::vec3 &value) const
    { 
        glUniform3fv(glGetUniformLocation(ID, name.c_str()), 1, &value[0]); 
    }
    void setVec3(const std::string &name, float x, float y, float z) const
    { 
        glUniform3f(glGetUniformLocation(ID, name.c_str()), x, y, z); 
    }
    // ------------------------------------------------------------------------
    void setVec4(const std::string &name, const glm::vec4 &value) const
    { 
        glUniform4fv(glGetUniformLocation(ID, name.c_str()), 1, &value[0]); 
    }
    void setVec4(const std::string &name, float x, float y, float z, float w) const
    { 
        glUniform4f(glGetUniformLocation(ID, name.c_str()), x, y, z, w); 
    }
    // ------------------------------------------------------------------------
    void setMat2(const std::string &name, const glm::mat2 &mat) const
    {
        glUniformMatrix2fv(glGetUniformLocation(ID, name.c_str()), 1, GL_FALSE, &mat[0][0]);
    }
    // ------------------------------------------------------------------------
    void setMat3(const std::string &name, const glm::mat3 &mat) const
    {
        glUniformMatrix3fv(glGetUniformLocation(ID, name.c_str()), 1, GL_FALSE, &mat[0][0]);
    }
    // ------------------------------------------------------------------------
    void setMat4(const std::string &name, const glm::mat4 &mat) const
    {
        glUniformMatrix4fv(glGetUniformLocation(ID, name.c_str()), 1, GL_FALSE, &mat[0][0]);
    }

private:
    // utility function for checking shader compilation/linking errors.
    // ------------------------------------------------------------------------
    void checkCompileErrors(GLuint shader, std::string type)
    {
        GLint success;
        GLchar infoLog[1024];
        if (type != "PROGRAM")
        {
            glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
            if (!success)
            {
                glGetShaderInfoLog(shader, 1024, NULL, infoLog);
                std::cout << "ERROR::SHADER_COMPILATION_ERROR of type: " << type << "\n" << infoLog << "\n -- --------------------------------------------------- -- " << std::endl;
            }
        }
        else
        {
            glGetProgramiv(shader, GL_LINK_STATUS, &success);
            if (!success)
            {
                glGetProgramInfoLog(shader, 1024, NULL, infoLog);
                std::cout << "ERROR::PROGRAM_LINKING_ERROR of type: " << type << "\n" << infoLog << "\n -- --------------------------------------------------- -- " << std::endl;
            }
        }
    }
};
#endif

6. 参考资料

[1]颜色 - LearnOpenGL CN (learnopengl-cn.github.io)

标签:1.0,07,OpenGL,C++,uniform,vec4,vec3,include,着色器
来源: https://www.cnblogs.com/jiujiubashiyi/p/16578528.html