首页 > TAG信息列表 > jittor
JittorSummary 工具使用说明
JittorSummary 工具使用说明 Jittor Summary Tool1. 使用2. 样例2.1 CNN for MNIST2.2 Multiple Inputs2.3 Multiple Ouputs2.4 CUDA support2.5 Try more models 3. Pytorch-to-JittorReferences Jittor Summary Tool 清华大学计算机系图形学实验室提出了一个全新的深jittor 视角看LSGAN
import jittor as jtfrom jittor import nnfrom jittor import Modulefrom jittor import initclass generator(Module): """The generator network inputs a vector of 1024 dimensions to generate an image with a resolution of 112 *jittor 训练手写数字识别(mnist)
jittor# classification mnist exampleimport jittor as jtfrom jittor import nn, Moduleimport numpy as npimport sys, osimport randomimport mathfrom jittor import initclass Model (Module): def使用jittor完美了解卷积的计算过程
def conv_naive(x, w): N,H,W,C = x.shape Kh, Kw, _C, Kc = w.shape assert C==_C, (x.shape, w.shape) y = np.zeros([N,H-Kh+1,W-Kw+1,Kc]) for i0 in range(N): for i1 in range(H-Kh+1):deepin v20上安装jittor全国过程
sudo apt install python3.7-dev libomp-devsudo python3.7 -m pip install git+https://gitee.com/chenyang918/jittor.git -i https://pypi.doubanio.com/simple python3.7 -m jittor.test.test_example#之前配置过的就直接测试即可 如果没有配置cuda 请参考https://dJittor框架API
Jittor框架API 这里是Jittor主模块的API文档,可以通过import jittor来获取该模块。 classjittor.ExitHooks exc_handler(exc_type, exc, *args) exit(code=0) hook() classjittor.Function(*args, **kw) Function Module for customized backward operations Example 1 (计图(Jittor) 1.1版本:新增骨干网络、JIT功能升级、支持多卡训练
计图(Jittor) 1.1版本:新增骨干网络、JIT功能升级、支持多卡训练 深度学习框架—计图(Jittor),Jittor的新版本V1.1上线了。主要变化包括: 增加了大量骨干网络的支持,增强了辅助转换脚本的能力,降低用户开发和移植模型的难度。 JIT(动态编译)功能升级,可支持高性能的自定义算子开发,并降低Jittor实现Conditional GAN
Jittor实现Conditional GAN Generative Adversarial Nets(GAN)提出了一种新的方法来训练生成模型。然而,GAN对于要生成的图片缺少控制。Conditional GAN(CGAN)通过添加显式的条件或标签,来控制生成的图像。本文讲解了CGAN的网络结构、损失函数设计、使用CGAN生成一串数字、从头训练CGAjittor和pytorch生成网络对比之wgan
jittor代码 import jittor as jt from jittor import init from jittor import nn from jittor.dataset.mnist import MNIST import jittor.transform as transform import argparse import os import numpy as np import math import sys import cv2使用jittor完美了解卷积的计算过程
def conv_naive(x, w): N,H,W,C = x.shape Kh, Kw, _C, Kc = w.shape assert C==_C, (x.shape, w.shape) y = np.zeros([N,H-Kh+1,W-Kw+1,Kc]) for i0 in range(N): for i1 in range(H-Kh+1): for i2 in range(W-Kw+1):