首页 > TAG信息列表 > decreasing
ARC138E Decreasing Subsequence
\(\texttt{或许更好的阅读体验}\) \(\texttt{link}\) 第一步是巧妙的转化:对于 \(a_i>0\),连边 \((i,a_i-1)\)。 对于每个序列 \(a\),连边后形成若干条链。 假设选出的 \(k\) 个点为 \(b_1,b_2,...,b_k\),并且 \(b_1<b_2<...<b_k\),对应的 \(a_{b_1}-1,...,a_{b_k}-1\) 为了方便记作 \(665. Non-decreasing Array
Given an array nums with n integers, your task is to check if it could become non-decreasing by modifying at most one element. We define an array is non-decreasing if nums[i] <= nums[i + 1] holds for every i (0-based) such that (0 <= i <= n - 2).0665. Non-decreasing Array (M)
Non-decreasing Array (M) 题目 Given an array nums with n integers, your task is to check if it could become non-decreasing by modifying at most one element. We define an array is non-decreasing if nums[i] <= nums[i + 1] holds for every i (0-based) such t665. Non-decreasing Array
Given an array nums with n integers, your task is to check if it could become non-decreasing by modifying at most 1 element. We define an array is non-decreasing if nums[i] <= nums[i + 1] holds for every i (0-based) such that (0 <= i <= n - 2).F. Decreasing Heights(思维,dp)
题:https://codeforces.com/contest/1353/problem/F 题意:给定n*m的矩形,每个位置都有aij的高度,位于某一位置你只能向下或向右走,且得满足下一个格子高度y和当前格子高度x条件:y==x+1; 分析:我们可以把题目条件转化为y==x,那么就可以通过确定一个高度从[1,1]往下找一个权值和最小路径。这Codeforces 1353F Decreasing Heights(dp)
题意 100*100的网格,每个格子有一个初始值,每次操作可以使一个格子的数-1,问你最少多少次操作后存在一条(只往右和下的)(从左上角到右下脚每格递增1的)路径。 格子权值至多1e15,保证答案存在 思路 路径长度显然是固定的,如果路径中有一个基准,那么每个格子应该是多少也是确定的 而路径中【cf1266D】D. Decreasing Debts(贪心)
传送门 题意: 现有\(n\)个人,有\(m\)对欠债关系:\(d(a,b)\)表示\(a\)欠\(b\ d(a,b)\)元。 现要给出一个最终的欠债关系,使得\(\displaystyle \sum d\)最小。 思路: 一开始以为这是图论上的问题,需要什么奇技淫巧使得最后图中没有无用的边。 实际上我们只需要考虑终态,即每个人需要给出多[Leetcode]977. Squares of a Sorted Array
Easy Given an array of integers A sorted in non-decreasing order, return an array of the squares of each number, also in sorted non-decreasing order. Example 1: Input: [-4,-1,0,3,10]Output: [0,1,9,16,100] Example 2: Input: [-7,-3,2,3,11]Output: [4,9,Monotonic Array LT896
An array is monotonic if it is either monotone increasing or monotone decreasing. An array A is monotone increasing if for all i <= j, A[i] <= A[j]. An array A is monotone decreasing if for all i <= j, A[i] >= A[j]. Return true if and only if