首页 > TAG信息列表 > IOI2022

IOI2022

鲶鱼塘 \((\texttt{Easy} \ 0 / 3)\) 设第 \(i\) 列的高度为 \(h_i\),若 \(h_{i - 1} > h_i < h_{i + 1}\),则可以直接令 \(h_i = 0\)。 于是可以设 \(f_{i, j}\) 表示 \(h_{i - 1} \le j = h_i\) 的答案;\(g_{i, j}\) 表示 \(h_{i - 1} > j = h_i\) 的答案,则根据上面的性质可以方便

【笔记】IOI2022

「IOI2022」鲶⻥塘 签到题。 如果我们记 \(a_i\) 表示第 \(i\) 列的高度,那么一定不存在 \(a_i\ge a_{i +1}\le a_{i+ 2}(a_{i+1} \neq 0)\) 的情况,假设存在,我们将 \(a_{i + 1}\leftarrow 0\) 答案不会更劣。同理如果 \(a_i\le a_{i + 1} \ge a_{i + 2}\),我们就将 \(a_{i + 1}\) 取