首页 > TAG信息列表 > ConvNeXt
使用PyTorch复现ConvNext:从Resnet到ConvNext的完整步骤详解
ConvNext论文提出了一种新的基于卷积的架构,不仅超越了基于 Transformer 的模型(如 Swin),而且可以随着数据量的增加而扩展!今天我们使用Pytorch来对其进行复现。下图显示了针对不同数据集/模型大小的 ConvNext 准确度。 作者首先采用众所周知的 ResNet 架构,并根据过去十年ConvNeXt: 20年代的卷积网络
ConvNeXt: 20年代的卷积网络 作者:elfin 参考资料来源:ConvNeXt 目录摘要一、介绍二、ConvNet的现代化:路线图2.1 训练技术2.2 宏观设计2.3 ResNeXt化2.4 逆瓶颈2.5 大核2.6 微观设计三、在ImageNet上面进行评估3.1 设置3.2 结论四、其他下游任务 项目地址:https://gi【ARXIV2201】ConvNeXt
论文:https://arxiv.org/abs/2201.03545 代码:https://github.com/facebookresearch/ConvNeXt Facebook 和 UC Berkeley 的科研人员提出了 ConvNeXt,对标的是2021年最火的 Swin Transformer,在相同的FLOPs下, ConvNeXt 比 Swin Transformer 拥有更高的准确率,在ImageNet 22K上达到 8