首页 > TAG信息列表 > CF375E
CF375E Red and Black Tree
题目传送门 Solution 非常神奇的一道题。 我们不考虑交换操作,相反,我们去考虑把多少个 \(0\) 的位置变为 \(1\),同时我们记录选了多少个黑点,如果跟原来黑点数量相同即是合法。 此时我们可以发现一个神奇的性质对于 \(u\) 的儿子 \(v\),如果覆盖 \(u\) 的节点不覆盖 \(v\),那么覆盖 \(vCF375E Red and Black Tree
题目传送门 Solution 非常神奇的一道题。 我们不考虑交换操作,相反,我们去考虑把多少个 \(0\) 的位置变为 \(1\),同时我们记录选了多少个黑点,如果跟原来黑点数量相同即是合法。 此时我们可以发现一个神奇的性质对于 \(u\) 的儿子 \(v\),如果覆盖 \(u\) 的节点不覆盖 \(v\),那么覆盖 \(v