首页 > TAG信息列表 > CF1707E
CF1707E Replace【倍增,ST表】
传送门 思路 学了析合树还不会做这题,感觉我真的没什么救/ll 对于这类跳若干步的问题,一个很自然的想法是预处理倍增数组,但这题的状态数量是 \(O(n^2)\) 的,看起来不能直接做。这时一个关键结论突然出现:设 \(f^k(l,r)\) 为 \([l,r]\) 操作 \(k\) 后的结果,那么若 \([l_1,r_1] \cup [l_CF1707E Replace【倍增,ST表】
传送门 思路 学了析合树还不会做这题,感觉我真的没什么救/ll 对于这类跳若干步的问题,一个很自然的想法是预处理倍增数组,但这题的状态数量是 \(O(n^2)\) 的,看起来不能直接做。这时一个关键结论突然出现:设 \(f^k(l,r)\) 为 \([l,r]\) 操作 \(k\) 后的结果,那么若 \([l_1,r_1] \cup [l_