首页 > TAG信息列表 > 6513

ML之xgboost:利用xgboost算法(sklearn+GridSearchCV)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

ML之xgboost:利用xgboost算法(sklearn+GridSearchCV)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)     目录 输出结果 设计思路 核心代码 更多输出         输出结果 正在更新……   设计思路 正在更新……   核心代码 from sklearn.grid_s

ML之xgboost:利用xgboost算法(sklearn+7CrVa)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

 ML之xgboost:利用xgboost算法(sklearn+7CrVa)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)     目录 输出结果 设计思路 核心代码         输出结果       设计思路     核心代码 kfold = StratifiedKFold(n_splits=10, random_state=7

ML之xgboost:利用xgboost算法(结合sklearn)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

ML之xgboost:利用xgboost算法(结合sklearn)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)           目录 输出结果 设计思路 核心代码               输出结果     设计思路     核心代码 bst =XGBClassifier(max_depth=3, learning_r

ML之xgboost:利用xgboost算法(自带方式)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)

ML之xgboost:利用xgboost算法(自带方式)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)     目录 输出结果 设计思路 核心代码       输出结果   1、xgboost(num_trees=0): Binary prediction based on  Mushroom Dataset   2、xgboost(num_tre