首页 > TAG信息列表 > 类边

Solution Set - Stirling 数相关杂题

  《好多题的题解》   「洛谷 P5408」第一类斯特林数·行   根据结论 \[x^{\overline{n}}=\sum_i{n\brack i}x^i, \]我们只需要求出 \(x^{\overline{n}}\) 的各项系数。显然的 \(\mathcal O(n\log^2n)\) 做法就足够过掉洛谷上的原题了,但是我们 OJ 比较卓越,所以得用 \(\math

[cf1149D]Abandoning Roads

根据kruskal的贪心过程,先将所有$a$类边连起来,对于一个连通块内的两点,必然通过$a$边联通 考虑对于一条最短路径,必然是一段(可能为空)$a$类边+1条$b$类边,同时其合法当且仅当这些$b$类边都能被加入最小生成树中,即不会与$a$类边产生环,又即不重复经过一个连通块 状压之前经过的连通块求最

[cf741C]Arpa’s overnight party and Mehrdad’s silent entering

直接令2i-1和2i的位置不相同,相当于有2n条边,对其进行二分图染色即可(这张图一定不存在奇环)。 假设给出的n条关系是A类边,2i-1和2i的边是B类边,可以发现一条路径一定是AB交替(因为A/B的终点一定不可能是A/B的起点),那么环就一定是有等量的A边和B边,即偶环。 1 #include<bits/stdc++.h> 2

7.9模拟赛T1图的遍历(dfs)

图的遍历(dfs) 【题目描述】 对于一个有向图G来说,我们存在一个经典的遍历算法,就是DFS (深度优先搜索遍历)。将G以1号点为起点进行DFS后,我们可以 得到G的一棵DFS遍历树T。就此,我们可以把G中的所有边分成4种 类型,如下: • 树边:边(u,v)满足是T上的边。 • 返祖边:边(u,v)满足在T上v是u的祖先