首页 > TAG信息列表 > 二元化

Transparent Classification with Multilayer Logical Perceptrons and Random Binarization

目录概主要内容输入简化 Wang Z., Zhang W, Liu N. and Wang J. Transparent classification with multilayer logical perceptrons and random binarization. In AAAI Conference on Artificial Intelligence (AAAI), 2020. 概 和这儿类似的rule-based的网络, 主要探讨如何训练

检测中心

检测每个形状的轮廓并计算中心: 转换为灰度:cv2.cvtColor()→高斯滤波cv2.GaussianBlur()→图像二元化cv2.thresholod() 1 import imutils 2 import cv2 3 4 #通过cv2.imread()直接获取函数 5 img = cv2.imread("C:/Users/15212/Desktop/python/example_shapes.png") 6 7

吴裕雄 python 机器学习——数据预处理二元化Binarizer模型

from sklearn.preprocessing import Binarizer#数据预处理二元化Binarizer模型def test_Binarizer(): X=[[1,2,3,4,5], [5,4,3,2,1], [3,3,3,3,3,], [1,1,1,1,1]] print("before transform:",X) binarizer=Binarizer(threshold=2.5) p

吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型

from sklearn.preprocessing import OneHotEncoder#数据预处理二元化OneHotEncoder模型def test_OneHotEncoder(): X=[[1,2,3,4,5], [5,4,3,2,1], [3,3,3,3,3,], [1,1,1,1,1]] print("before transform:",X) encoder=OneHotEncoder(spars