其他分享
首页 > 其他分享> > Scrapy爬虫:链家全国各省城市房屋数据批量爬取,别再为房屋发愁!

Scrapy爬虫:链家全国各省城市房屋数据批量爬取,别再为房屋发愁!

作者:互联网

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

:点击上方[Python爬虫数据分析挖掘]右上角[...][设为星标⭐]

文章目录

1、前言

本文爬取的是链家的二手房信息,相信个位小伙伴看完后一定能自己动手爬取链家的其他模块,
比如:租房、新房等等模块房屋数据。

话不多说,来到链家首页,点击北京

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

来到如下页面,这里有全国各个各个省份城市,而且点击某个城市会跳转到以该城市的为定位的页面

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

点击二手房,来到二手房页面,可以发现链接地址只是在原先的URL上拼接了 /ershoufang/,所以我们之后也可以直接拼接

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

但注意,以下这种我们不需要的需要排除

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

多页爬取,规律如下,多的也不用我说了,大家都能看出来

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

2、基本环境搭建

建立数据库

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

建表语句

CREATE TABLE `lianjia` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `city` varchar(100) DEFAULT NULL,
  `money` varchar(100) DEFAULT NULL,
  `address` varchar(100) DEFAULT NULL,
  `house_pattern` varchar(100) DEFAULT NULL,
  `house_size` varchar(100) DEFAULT NULL,
  `house_degree` varchar(100) DEFAULT NULL,
  `house_floor` varchar(100) DEFAULT NULL,
  `price` varchar(50) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=212 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;


创建scrapy项目


watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

start.py

from scrapy import cmdline


cmdline.execute("scrapy crawl lianjia".split())


3、代码注释分析

lianjia.py

# -*- coding: utf-8 -*-
import scrapy
import time
from Lianjia.items import LianjiaItem




class LianjiaSpider(scrapy.Spider):
    name = 'lianjia'
    allowed_domains = ['lianjia.com']
    #拥有各个省份城市的URL
    start_urls = ['https://www.lianjia.com/city/']


    def parse(self, response):
      #参考图1,找到class值为city_list_ul的ul标签,在获取其下的所有li标签
        ul = response.xpath("//ul[@class='city_list_ul']/li")
        
        #遍历ul,每个省份代表一个li标签
        for li in ul:
          #参考图2,获取每个省份下的所有城市的li标签
            data_ul = li.xpath(".//ul/li")
      
      #遍历得到每个城市
            for li_data in data_ul:
              #参考图3,获取每个城市的URL和名称
                city = li_data.xpath(".//a/text()").get()
                #拼接成为二手房链接
                page_url = li_data.xpath(".//a/@href").get() + "/ershoufang/"
        
        #多页爬取
                for i in range(3):
                    url = page_url + "pg" + str(i+1)
                    print(url)
                    yield scrapy.Request(url=url,callback=self.pageData,meta={"info":city})


    def pageData(self,response):
        print("="*50)
        #获取传过来的城市名称
        city = response.meta.get("info")
        
        #参考图4,找到class值为sellListContent的ul标签,在获取其下的所有li标签
        detail_li = response.xpath("//ul[@class='sellListContent']/li")
        
        #遍历
        for page_li in detail_li:
          #参考图5,获取class值判断排除多余的广告
            if page_li.xpath("@class").get() == "list_app_daoliu":
                continue
                
            #参考图6,获取房屋总价
            money = page_li.xpath(".//div[@class='totalPrice']/span/text()").get()
            money = str(money) + "万"
      
      #参考图7
            address = page_li.xpath(".//div[@class='positionInfo']/a/text()").get()
            
             #参考图8,获取到房屋的全部数据,进行分割
            house_data = page_li.xpath(".//div[@class='houseInfo']/text()").get().split("|")


            #房屋格局
            house_pattern = house_data[0]
            
            #面积大小
            house_size = house_data[1].strip()
            #装修程度
            house_degree = house_data[3].strip()
            #楼层
            house_floor = house_data[4].strip()
            #单价,参考图9
            price = page_li.xpath(".//div[@class='unitPrice']/span/text()").get().replace("单价","")
            
            time.sleep(0.5)
            item = LianjiaItem(city=city,money=money,address=address,house_pattern=house_pattern,house_size=house_size,house_degree=house_degree,house_floor=house_floor,price=price)
            yield item




3、图片辅助分析

图1

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

图2

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

图3

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

图4

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

图5

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

图6

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

图7

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

图8

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

图9

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

4、完整代码

lianjia.py

# -*- coding: utf-8 -*-
import scrapy
import time
from Lianjia.items import LianjiaItem




class LianjiaSpider(scrapy.Spider):
    name = 'lianjia'
    allowed_domains = ['lianjia.com']
    start_urls = ['https://www.lianjia.com/city/']


    def parse(self, response):
        ul = response.xpath("//ul[@class='city_list_ul']/li")
        for li in ul:
            data_ul = li.xpath(".//ul/li")


            for li_data in data_ul:
                city = li_data.xpath(".//a/text()").get()
                page_url = li_data.xpath(".//a/@href").get() + "/ershoufang/"
                for i in range(3):
                    url = page_url + "pg" + str(i+1)
                    print(url)
                    yield scrapy.Request(url=url,callback=self.pageData,meta={"info":city})


    def pageData(self,response):
        print("="*50)
        city = response.meta.get("info")
        detail_li = response.xpath("//ul[@class='sellListContent']/li")
        for page_li in detail_li:
            if page_li.xpath("@class").get() == "list_app_daoliu":
                continue
            money = page_li.xpath(".//div[@class='totalPrice']/span/text()").get()
            money = str(money) + "万"
            address = page_li.xpath(".//div[@class='positionInfo']/a/text()").get()


            #获取到房屋的全部数据,进行分割
            house_data = page_li.xpath(".//div[@class='houseInfo']/text()").get().split("|")


            #房屋格局
            house_pattern = house_data[0]
            #面积大小
            house_size = house_data[1].strip()
            #装修程度
            house_degree = house_data[3].strip()
            #楼层
            house_floor = house_data[4].strip()
            #单价
            price = page_li.xpath(".//div[@class='unitPrice']/span/text()").get().replace("单价","")
            time.sleep(0.5)
            item = LianjiaItem(city=city,money=money,address=address,house_pattern=house_pattern,house_size=house_size,house_degree=house_degree,house_floor=house_floor,price=price)
            yield item




items.py

# -*- coding: utf-8 -*-
import scrapy




class LianjiaItem(scrapy.Item):
    #城市
    city = scrapy.Field()
    #总价
    money = scrapy.Field()
    #地址
    address = scrapy.Field()
    # 房屋格局
    house_pattern = scrapy.Field()
    # 面积大小
    house_size = scrapy.Field()
    # 装修程度
    house_degree = scrapy.Field()
    # 楼层
    house_floor = scrapy.Field()
    # 单价
    price = scrapy.Field()


pipelines.py

import pymysql




class LianjiaPipeline:
    def __init__(self):
        dbparams = {
            'host': '127.0.0.1',
            'port': 3306,
            'user': 'root',  #数据库账号
            'password': 'root',  #数据库密码
            'database': 'lianjia', #数据库名称
            'charset': 'utf8'
        }
        #初始化数据库连接
        self.conn = pymysql.connect(**dbparams)
        self.cursor = self.conn.cursor()
        self._sql = None




    def process_item(self, item, spider):
      #执行sql
        self.cursor.execute(self.sql,(item['city'],item['money'],item['address'],item['house_pattern'],item['house_size'],item['house_degree']
                                      ,item['house_floor'],item['price']))
        self.conn.commit()  #提交
        return item


    @property
    def sql(self):
        if not self._sql:
          #数据库插入语句
            self._sql = """
                    insert into lianjia(id,city,money,address,house_pattern,house_size,house_degree,house_floor,price)
                    values(null,%s,%s,%s,%s,%s,%s,%s,%s)
                """
            return self._sql
        return self._sql


settings.py

# -*- coding: utf-8 -*-


BOT_NAME = 'Lianjia'


SPIDER_MODULES = ['Lianjia.spiders']
NEWSPIDER_MODULE = 'Lianjia.spiders'


LOG_LEVEL="ERROR"


# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'Lianjia (+http://www.yourdomain.com)'


# Obey robots.txt rules
ROBOTSTXT_OBEY = False


# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32


# Configure a delay for requests for the same website (default: 0)
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
#DOWNLOAD_DELAY = 3
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16


# Disable cookies (enabled by default)
#COOKIES_ENABLED = False


# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False


# Override the default request headers:
DEFAULT_REQUEST_HEADERS = {
  'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
  'Accept-Language': 'en',
  "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.135 Safari/537.36 Edg/84.0.522.63"
}


# Enable or disable spider middlewares
# See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
#    'Lianjia.middlewares.LianjiaSpiderMiddleware': 543,
#}


# Enable or disable downloader middlewares
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#DOWNLOADER_MIDDLEWARES = {
#    'Lianjia.middlewares.LianjiaDownloaderMiddleware': 543,
#}


# Enable or disable extensions
# See https://docs.scrapy.org/en/latest/topics/extensions.html
#EXTENSIONS = {
#    'scrapy.extensions.telnet.TelnetConsole': None,
#}


# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
   'Lianjia.pipelines.LianjiaPipeline': 300,
}


# Enable and configure the AutoThrottle extension (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False


# Enable and configure HTTP caching (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'


5、运行结果

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

全部数据远远大于518条,我爬取一会就停下来了,这里只是个演示。

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

- END -

各种爬虫源码获取方式

识别文末二维码,回复:爬虫源码

欢迎关注公众号:Python爬虫数据分析挖掘,方便及时阅读最新文章

记录学习python的点点滴滴;

回复【开源源码】免费获取更多开源项目源码;

watermark,size_16,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_90,type_ZmFuZ3poZW5naGVpdGk=

标签:house,self,链家,li,爬取,scrapy,房屋,data,class
来源: https://blog.51cto.com/u_11949039/2835159