其他分享
首页 > 其他分享> > BBN

BBN

作者:互联网

目录

motivation

BBN 对于处理长尾问题非常有效, 我在想, 能不能类似地用在鲁棒问题上.

image-20210118165405334

思想很简单, 就是上面用干净数据, 下面用对抗样本(其用\(\alpha=0.5\)的eval mode 生成), 但是结果非常差.

settings

- batch_size: 128

- beta1: 0.9

- beta2: 0.999

- dataset: cifar10

- epochs: 200

- epsilon: 0.03137254901960784

- eva_alpha: 0.5

- learning_policy: AT

- loss: cross_entropy

- lr: 0.1

- model: resnet32

- momentum: 0.9

- norm_cls: True | False

- optimizer: sgd

- progress: False

- resume: False

- seed: 1

- steps: 10

- stepsize: 0.25

- transform: default

- weight_decay: 0.0002

results

Loss Accuracy Robustness
parabolic decay; norm_cls=False image-20210517080655098 image-20210517080720131 image-20210517080735107
fixed_alpha=0.5; norm_cls=False image-20210518083901692 image-20210518083806674 image-20210518083821363
parabolic decay; norm_cls=True image-20210519073805812 image-20210519073708238 image-20210519073724974
fixed_alpha=0.5; norm_cls=True image-20210521073244845 image-20210521073156423 image-20210521073227977

可以看得出来, 强行糅合在一起效果不好, 显然干净的features或者对抗的features占主导的时候精度能上去.

标签:BBN,False,decay,0.5,alpha,norm,cls
来源: https://www.cnblogs.com/MTandHJ/p/14819852.html