其他分享
首页 > 其他分享> > [CF1278F] Cards 加强版

[CF1278F] Cards 加强版

作者:互联网

\(\text{Problem}:\)CF1278F Cards 加强版

\(\text{Solution}:\)

设 \(p=\frac{1}{m}\),要求的是:

\[\sum\limits_{i=0}^{n}\binom{n}{i}p^{i}(1-p)^{n-i}i^{k} \]

将 \(i^{k}\) 利用第二类斯特林数展开,有:

\[\begin{aligned} ans&=\sum\limits_{i=0}^{n}\binom{n}{i}p^{i}(1-p)^{n-i}\sum\limits_{j=0}^{k}{k\brace j}i^{\underline{j}}\\ &=\sum\limits_{j=0}^{k}{k\brace j}\sum\limits_{i=j}^{n}i^{\underline{j}}\binom{n}{i}p^{i}(1-p)^{n-i}\\ &=\sum\limits_{j=0}^{k}{k\brace j}\sum\limits_{i=j}^{n}\binom{n-j}{i-j}n^{\underline{j}}p^{i}(1-p)^{n-i}\\ &=\sum\limits_{j=0}^{k}{k\brace j}n^{\underline{j}}p^{j}\sum\limits_{i=0}^{n-j}\binom{n-j}{i}p^{i}(1-p)^{n-i-j}\\ &=\sum\limits_{j=0}^{k}{k\brace j}n^{\underline{j}}p^{j} \end{aligned} \]

至此,可以在 \(O(k\log k)\) 的时间复杂度内求出答案,但无法通过本题。

考虑利用二项式反演展开 \({k\brace j}\),有:

\[\begin{aligned} ans&=\sum\limits_{j=0}^{k}p^{j}\binom{n}{j}j!\sum\limits_{i=0}^{j}\frac{(-1)^{j-i}i^{k}}{i!(j-i)!}\\ &=\sum\limits_{j=0}^{k}p^{j}\binom{n}{j}\sum\limits_{i=0}^{j}\binom{j}{i}(-1)^{j-i}i^{k}\\ &=\sum\limits_{i=0}^{k}i^{k}\sum\limits_{j=i}^{k}p^{j}\binom{n}{j}(-1)^{j-i}\binom{j}{i}\\ &=\sum\limits_{i=0}^{k}i^{k}(-1)^{-i}\sum\limits_{j=i}^{k}(-p)^{j}\binom{n}{j}\binom{j}{i}\\ &=\sum\limits_{i=0}^{k}i^{k}(-1)^{i}\sum\limits_{j=i}^{k}(-p)^{j}\binom{n-i}{j-i}\binom{n}{i}\\ &=\sum\limits_{i=0}^{k}i^{k}(-1)^{i}(-p)^{i}\binom{n}{i}\sum\limits_{j=0}^{k-i}(-p)^{j}\binom{n-i}{j}\\ \end{aligned} \]

发现 \(\sum_{j=0}^{k-i}\) 中,当 \(n>k\) 时无法使用二项式定理,难以直接展开,而 \(i\) 和 \(k\) 同阶,故考虑递推求解。

设 \(g_{i}=\sum\limits_{j=0}^{k-i}(-p)^{j}\binom{n-i}{j}\),有:

\[\begin{aligned} g_{i}&=\sum\limits_{j=0}^{k-i}(-p)^{j}\binom{n-i}{j}\\ &=\sum\limits_{j=0}^{k-i}(-p)^{j}\left(\binom{n-i-1}{j}+\binom{n-i-1}{j-1}\right)\\ &=(-p+1)g_{i+1}+(-p)^{k-i}\binom{n-i-1}{k-i} \end{aligned} \]

边界条件为 \(g_{k}=1\)。预处理 \(p\) 的幂,可以 \(O(k)\) 递推出 \(g_{i}\)。

将 \(g_{i}\) 带回原式,有:

\[ans=\sum\limits_{i=0}^{k}i^{k}p^{i}\binom{n}{i}g_{i} \]

由于 \(i^{k}\) 是积性函数,线性筛即可。求 \(\binom{n}{i}\) 将其展开为下降幂形式,边算边乘。总时间复杂度 \(O(k)\)。

为方便,将 \(n\leq k\) 与 \(n>k\) 分别实现。

\(\text{Code}:\)

#include <bits/stdc++.h>
#pragma GCC optimize(3)
//#define int long long
#define ri register
#define mk make_pair
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#define is insert
#define es erase
#define vi vector<int>
#define vpi vector<pair<int,int>>
using namespace std; const int N=10000010, Mod=998244353;
inline int read()
{
	int s=0, w=1; ri char ch=getchar();
	while(ch<'0'||ch>'9') { if(ch=='-') w=-1; ch=getchar(); }
	while(ch>='0'&&ch<='9') s=(s<<3)+(s<<1)+(ch^48), ch=getchar();
	return s*w;
}
int n,P,K,up,iiv[N],pw[N],pw2[N],g[N],ans;
int pri[N/10],cnt,w[N]; bool book[N];
inline int ksc(int x,int p) { int res=1; for(;p;p>>=1, x=1ll*x*x%Mod) if(p&1) res=1ll*res*x%Mod; return res; }
inline void Init()
{
	iiv[1]=1;
	for(ri int i=2;i<=up;i++) iiv[i]=1ll*(Mod-Mod/i)*iiv[Mod%i]%Mod;
	pw[0]=1;
	P=ksc(P,Mod-2);
	for(ri int i=1;i<=up;i++) pw[i]=1ll*pw[i-1]*P%Mod;
	w[1]=1;
	for(ri int i=2;i<=up;i++)
	{
		if(!book[i]) pri[++cnt]=i, w[i]=ksc(i,K);
		for(ri int j=1;j<=cnt&&i*pri[j]<=up;j++)
		{
			book[i*pri[j]]=1;
			w[i*pri[j]]=1ll*w[i]*w[pri[j]]%Mod;
			if(i%pri[j]==0) break;
		}
	}
}
signed main()
{
	n=read(), P=read(), K=read();
	up=min(n,K);
	Init();
	int Q=(Mod+1-P)%Mod;
	if(n<=K)
	{
		pw2[0]=1;
		if(Q) for(ri int i=1;i<=n;i++) pw2[i]=1ll*pw2[i-1]*Q%Mod;
		for(ri int i=0,now=1,inv=1;i<=n;i++)
		{
			ans=(ans+1ll*w[i]*pw[i]%Mod*now%Mod*inv%Mod*pw2[n-i]%Mod)%Mod;
			now=1ll*now*(n-i)%Mod;
			inv=1ll*inv*iiv[i+1]%Mod;
		}
		printf("%d\n",ans);
		return 0;
	}
	g[K]=1;
	int now=1;
	for(ri int i=K-1;~i;i--)
	{
		now=1ll*now*(n-i-1)%Mod*iiv[K-i]%Mod;
		g[i]=1ll*now*pw[K-i]%Mod;
		if((K-i)&1) g[i]=Mod-g[i];
		g[i]=(g[i]+1ll*g[i+1]*Q%Mod)%Mod;
	}
	for(ri int i=0,now=1,inv=1;i<=K;i++)
	{
		ans=(ans+1ll*w[i]*pw[i]%Mod*now%Mod*inv%Mod*g[i]%Mod)%Mod;
		now=1ll*now*(n-i)%Mod;
		inv=1ll*inv*iiv[i+1]%Mod; 
	}
	printf("%d\n",ans);
	return 0;
}

标签:ch,CF1278F,加强版,limits,sum,Cards,binom,aligned,define
来源: https://www.cnblogs.com/zkdxl/p/14717458.html