高翔myslam前端代码
作者:互联网
//
// Created by gaoxiang on 19-5-2.
//
#include <opencv2/opencv.hpp>
#include "myslam/algorithm.h"
#include "myslam/backend.h"
#include "myslam/config.h"
#include "myslam/feature.h"
#include "myslam/frontend.h"
#include "myslam/g2o_types.h"
#include "myslam/map.h"
#include "myslam/viewer.h"
namespace myslam {
Frontend::Frontend() {
gftt_ =
cv::GFTTDetector::create(Config::Get<int>("num_features"), 0.01, 20);
num_features_init_ = Config::Get<int>("num_features_init");
num_features_ = Config::Get<int>("num_features");
}
bool Frontend::AddFrame(myslam::Frame::Ptr frame) {
current_frame_ = frame;
switch (status_) {
case FrontendStatus::INITING:
StereoInit();
break;
case FrontendStatus::TRACKING_GOOD:
case FrontendStatus::TRACKING_BAD:
Track();
break;
case FrontendStatus::LOST:
Reset();
break;
}
last_frame_ = current_frame_;
return true;
}
bool Frontend::Track() {
if (last_frame_) {
current_frame_->SetPose(relative_motion_ * last_frame_->Pose());
}
int num_track_last = TrackLastFrame();
tracking_inliers_ = EstimateCurrentPose();
if (tracking_inliers_ > num_features_tracking_) {
// tracking good
status_ = FrontendStatus::TRACKING_GOOD;
} else if (tracking_inliers_ > num_features_tracking_bad_) {
// tracking bad
status_ = FrontendStatus::TRACKING_BAD;
} else {
// lost
status_ = FrontendStatus::LOST;
}
InsertKeyframe();
relative_motion_ = current_frame_->Pose() * last_frame_->Pose().inverse();
if (viewer_) viewer_->AddCurrentFrame(current_frame_);
return true;
}
bool Frontend::InsertKeyframe() {
if (tracking_inliers_ >= num_features_needed_for_keyframe_) {
// still have enough features, don't insert keyframe
return false;
}
// current frame is a new keyframe
current_frame_->SetKeyFrame();
map_->InsertKeyFrame(current_frame_);
LOG(INFO) << "Set frame " << current_frame_->id_ << " as keyframe "
<< current_frame_->keyframe_id_;
SetObservationsForKeyFrame();
DetectFeatures(); // detect new features
// track in right image
FindFeaturesInRight();
// triangulate map points
TriangulateNewPoints();
// update backend because we have a new keyframe
backend_->UpdateMap();
if (viewer_) viewer_->UpdateMap();
return true;
}
void Frontend::SetObservationsForKeyFrame() {
for (auto &feat : current_frame_->features_left_) {
auto mp = feat->map_point_.lock();
if (mp) mp->AddObservation(feat);
}
}
int Frontend::TriangulateNewPoints() {
std::vector<SE3> poses{camera_left_->pose(), camera_right_->pose()};
SE3 current_pose_Twc = current_frame_->Pose().inverse();
int cnt_triangulated_pts = 0;
for (size_t i = 0; i < current_frame_->features_left_.size(); ++i) {
if (current_frame_->features_left_[i]->map_point_.expired() &&
current_frame_->features_right_[i] != nullptr) {
// 左图的特征点未关联地图点且存在右图匹配点,尝试三角化
std::vector<Vec3> points{
camera_left_->pixel2camera(
Vec2(current_frame_->features_left_[i]->position_.pt.x,
current_frame_->features_left_[i]->position_.pt.y)),
camera_right_->pixel2camera(
Vec2(current_frame_->features_right_[i]->position_.pt.x,
current_frame_->features_right_[i]->position_.pt.y))};
Vec3 pworld = Vec3::Zero();
if (triangulation(poses, points, pworld) && pworld[2] > 0) {
auto new_map_point = MapPoint::CreateNewMappoint();
pworld = current_pose_Twc * pworld;
new_map_point->SetPos(pworld);
new_map_point->AddObservation(
current_frame_->features_left_[i]);
new_map_point->AddObservation(
current_frame_->features_right_[i]);
current_frame_->features_left_[i]->map_point_ = new_map_point;
current_frame_->features_right_[i]->map_point_ = new_map_point;
map_->InsertMapPoint(new_map_point);
cnt_triangulated_pts++;
}
}
}
LOG(INFO) << "new landmarks: " << cnt_triangulated_pts;
return cnt_triangulated_pts;
}
int Frontend::EstimateCurrentPose() {
// setup g2o
typedef g2o::BlockSolver_6_3 BlockSolverType;
typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType>
LinearSolverType;
auto solver = new g2o::OptimizationAlgorithmLevenberg(
g2o::make_unique<BlockSolverType>(
g2o::make_unique<LinearSolverType>()));
g2o::SparseOptimizer optimizer;
optimizer.setAlgorithm(solver);
// vertex
VertexPose *vertex_pose = new VertexPose(); // camera vertex_pose
vertex_pose->setId(0);
vertex_pose->setEstimate(current_frame_->Pose());
optimizer.addVertex(vertex_pose);
// K
Mat33 K = camera_left_->K();
// edges
int index = 1;
std::vector<EdgeProjectionPoseOnly *> edges;
std::vector<Feature::Ptr> features;
for (size_t i = 0; i < current_frame_->features_left_.size(); ++i) {
auto mp = current_frame_->features_left_[i]->map_point_.lock();
if (mp) {
features.push_back(current_frame_->features_left_[i]);
EdgeProjectionPoseOnly *edge =
new EdgeProjectionPoseOnly(mp->pos_, K);
edge->setId(index);
edge->setVertex(0, vertex_pose);
edge->setMeasurement(
toVec2(current_frame_->features_left_[i]->position_.pt));
edge->setInformation(Eigen::Matrix2d::Identity());
edge->setRobustKernel(new g2o::RobustKernelHuber);
edges.push_back(edge);
optimizer.addEdge(edge);
index++;
}
}
// estimate the Pose the determine the outliers
const double chi2_th = 5.991;
int cnt_outlier = 0;
for (int iteration = 0; iteration < 4; ++iteration) {
vertex_pose->setEstimate(current_frame_->Pose());
optimizer.initializeOptimization();
optimizer.optimize(10);
cnt_outlier = 0;
// count the outliers
for (size_t i = 0; i < edges.size(); ++i) {
auto e = edges[i];
if (features[i]->is_outlier_) {
e->computeError();
}
if (e->chi2() > chi2_th) {
features[i]->is_outlier_ = true;
e->setLevel(1);
cnt_outlier++;
} else {
features[i]->is_outlier_ = false;
e->setLevel(0);
};
if (iteration == 2) {
e->setRobustKernel(nullptr);
}
}
}
LOG(INFO) << "Outlier/Inlier in pose estimating: " << cnt_outlier << "/"
<< features.size() - cnt_outlier;
// Set pose and outlier
current_frame_->SetPose(vertex_pose->estimate());
LOG(INFO) << "Current Pose = \n" << current_frame_->Pose().matrix();
for (auto &feat : features) {
if (feat->is_outlier_) {
feat->map_point_.reset();
feat->is_outlier_ = false; // maybe we can still use it in future
}
}
return features.size() - cnt_outlier;
}
int Frontend::TrackLastFrame() {
// use LK flow to estimate points in the right image
std::vector<cv::Point2f> kps_last, kps_current;
for (auto &kp : last_frame_->features_left_) {
if (kp->map_point_.lock()) {
// use project point
auto mp = kp->map_point_.lock();
auto px =
camera_left_->world2pixel(mp->pos_, current_frame_->Pose());
kps_last.push_back(kp->position_.pt);
kps_current.push_back(cv::Point2f(px[0], px[1]));
} else {
kps_last.push_back(kp->position_.pt);
kps_current.push_back(kp->position_.pt);
}
}
std::vector<uchar> status;
Mat error;
cv::calcOpticalFlowPyrLK(
last_frame_->left_img_, current_frame_->left_img_, kps_last,
kps_current, status, error, cv::Size(11, 11), 3,
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30,
0.01),
cv::OPTFLOW_USE_INITIAL_FLOW);
int num_good_pts = 0;
for (size_t i = 0; i < status.size(); ++i) {
if (status[i]) {
cv::KeyPoint kp(kps_current[i], 7);
Feature::Ptr feature(new Feature(current_frame_, kp));
feature->map_point_ = last_frame_->features_left_[i]->map_point_;
current_frame_->features_left_.push_back(feature);
num_good_pts++;
}
}
LOG(INFO) << "Find " << num_good_pts << " in the last image.";
return num_good_pts;
}
bool Frontend::StereoInit() {
int num_features_left = DetectFeatures();
int num_coor_features = FindFeaturesInRight();
if (num_coor_features < num_features_init_) {
return false;
}
bool build_map_success = BuildInitMap();
if (build_map_success) {
status_ = FrontendStatus::TRACKING_GOOD;
if (viewer_) {
viewer_->AddCurrentFrame(current_frame_);
viewer_->UpdateMap();
}
return true;
}
return false;
}
int Frontend::DetectFeatures() {
cv::Mat mask(current_frame_->left_img_.size(), CV_8UC1, 255);
for (auto &feat : current_frame_->features_left_) {
cv::rectangle(mask, feat->position_.pt - cv::Point2f(10, 10),
feat->position_.pt + cv::Point2f(10, 10), 0, CV_FILLED);
}
std::vector<cv::KeyPoint> keypoints;
gftt_->detect(current_frame_->left_img_, keypoints, mask);
int cnt_detected = 0;
for (auto &kp : keypoints) {
current_frame_->features_left_.push_back(
Feature::Ptr(new Feature(current_frame_, kp)));
cnt_detected++;
}
LOG(INFO) << "Detect " << cnt_detected << " new features";
return cnt_detected;
}
int Frontend::FindFeaturesInRight() {
// use LK flow to estimate points in the right image
std::vector<cv::Point2f> kps_left, kps_right;
for (auto &kp : current_frame_->features_left_) {
kps_left.push_back(kp->position_.pt);
auto mp = kp->map_point_.lock();
if (mp) {
// use projected points as initial guess
auto px =
camera_right_->world2pixel(mp->pos_, current_frame_->Pose());
kps_right.push_back(cv::Point2f(px[0], px[1]));
} else {
// use same pixel in left iamge
kps_right.push_back(kp->position_.pt);
}
}
std::vector<uchar> status;
Mat error;
cv::calcOpticalFlowPyrLK(
current_frame_->left_img_, current_frame_->right_img_, kps_left,
kps_right, status, error, cv::Size(11, 11), 3,
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30,
0.01),
cv::OPTFLOW_USE_INITIAL_FLOW);
int num_good_pts = 0;
for (size_t i = 0; i < status.size(); ++i) {
if (status[i]) {
cv::KeyPoint kp(kps_right[i], 7);
Feature::Ptr feat(new Feature(current_frame_, kp));
feat->is_on_left_image_ = false;
current_frame_->features_right_.push_back(feat);
num_good_pts++;
} else {
current_frame_->features_right_.push_back(nullptr);
}
}
LOG(INFO) << "Find " << num_good_pts << " in the right image.";
return num_good_pts;
}
bool Frontend::BuildInitMap() {
std::vector<SE3> poses{camera_left_->pose(), camera_right_->pose()};
size_t cnt_init_landmarks = 0;
for (size_t i = 0; i < current_frame_->features_left_.size(); ++i) {
if (current_frame_->features_right_[i] == nullptr) continue;
// create map point from triangulation
std::vector<Vec3> points{
camera_left_->pixel2camera(
Vec2(current_frame_->features_left_[i]->position_.pt.x,
current_frame_->features_left_[i]->position_.pt.y)),
camera_right_->pixel2camera(
Vec2(current_frame_->features_right_[i]->position_.pt.x,
current_frame_->features_right_[i]->position_.pt.y))};
Vec3 pworld = Vec3::Zero();
if (triangulation(poses, points, pworld) && pworld[2] > 0) {
auto new_map_point = MapPoint::CreateNewMappoint();
new_map_point->SetPos(pworld);
new_map_point->AddObservation(current_frame_->features_left_[i]);
new_map_point->AddObservation(current_frame_->features_right_[i]);
current_frame_->features_left_[i]->map_point_ = new_map_point;
current_frame_->features_right_[i]->map_point_ = new_map_point;
cnt_init_landmarks++;
map_->InsertMapPoint(new_map_point);
}
}
current_frame_->SetKeyFrame();
map_->InsertKeyFrame(current_frame_);
backend_->UpdateMap();
LOG(INFO) << "Initial map created with " << cnt_init_landmarks
<< " map points";
return true;
}
bool Frontend::Reset() {
LOG(INFO) << "Reset is not implemented. ";
return true;
}
} // namespace myslam
标签:map,features,myslam,前端,current,_-,frame,高翔,left 来源: https://blog.csdn.net/YMWM_/article/details/115069098