【高等数学】九种二次曲面及其方程
作者:互联网
- 椭圆锥面:
x
2
a
2
+
y
2
b
2
=
z
2
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=z^{2}
a2x2+b2y2=z2
- 椭球面:
x
2
a
2
+
y
2
b
2
+
z
2
c
2
=
1
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
a2x2+b2y2+c2z2=1
- 单叶双曲面:
x
2
a
2
+
y
2
b
2
−
z
2
c
2
=
1
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
a2x2+b2y2−c2z2=1
- 双叶双曲面:
x
2
a
2
−
y
2
b
2
−
z
2
c
2
=
1
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
a2x2−b2y2−c2z2=1
- 椭圆抛物面:
x
2
a
2
+
y
2
b
2
=
z
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=z
a2x2+b2y2=z
- 双曲抛物面:
x
2
a
2
−
y
2
b
2
=
z
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=z
a2x2−b2y2=z
- 椭圆柱面:
x
2
a
2
+
y
2
b
2
=
1
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
a2x2+b2y2=1
- 双曲柱面:
x
2
a
2
−
y
2
b
2
=
1
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
a2x2−b2y2=1
- 抛物柱面:
x
2
=
a
y
x^{2}=ay
x2=ay
标签:双曲面,frac,c2z2,二次曲面,ay,a2x2,九种,b2y2,高等数学 来源: https://blog.csdn.net/weixin_43896318/article/details/114838354