数据结构——最小堆
作者:互联网
优先队列懒得打了
#include <iostream>
//#include<priority_queue>
using namespace std;
const int DefaultSize=10;
template<class T>
class MinHeap {
public:
MinHeap(int sz = DefaultSize); //构造函数:建立空堆
MinHeap(T arr[], int n); //构造函数:通过一个数组创建堆
~MinHeap() { delete[] heap; } //析构函数
bool insert(const T& x); //将x插入到最小堆中
bool removeMin(T& x); //删除堆顶元素(min value)
bool isTmpty() const; //判断堆是否是空
bool isFull() const; //判断堆是否已满
void makeTmpty(); //置空堆
void output(); //数组元素输出
private:
T* heap; //存放最小堆元素的数组
int currentSize; //最小堆中当前元素的个数
int maxHeapSize; //最小堆最多存放元素个数
void siftDown(int start, int m);//从start到m下滑调整为最小堆
void siftUp(int start); //从start到0上滑调整为最小堆
};
template<class T>
MinHeap<T>::MinHeap(int sz) {
maxHeapSize = (DefaultSize < sz) ? sz : DefaultSize;
heap = new T[maxHeapSize];
if (heap == NULL) {
cerr << "内存分配失败" << endl;
exit(1);
}
currentSize = 0;
}
template<class T>
MinHeap<T>::MinHeap(T arr[], int n) {
maxHeapSize = (DefaultSize < n) ? n : DefaultSize;
heap = new T[maxHeapSize];
if (heap == NULL) {
cerr << "内存分配失败" << endl;
exit(1);
}
for (int i = 0; i < n; i++) {
heap[i] = arr[i];
}
currentSize = n;
//利用完全二叉树中元素的排列规律,找到最初调整位置,也就是最后的分支节点
int currentPos = (currentSize - 1) / 2;
while (currentPos >= 0) {
siftDown(currentPos, currentSize - 1);
currentPos--;
}
}
template<class T>
void MinHeap<T>::output() {
for (int i = 0; i < currentSize; i++) {
cout << heap[i] << ' ';
}
}
template<class T>
bool MinHeap<T>::isTmpty() const {
return (0 == currentSize) ? true : false;
}
template<class T>
bool MinHeap<T>::isFull() const {
return (maxHeapSize == currentSize) ? true : false;
}
template<class T>
void MinHeap<T>::makeTmpty() {
currentSize = 0;
}
template<class T>
bool MinHeap<T>::insert(const T& x) {
if (isFull()) { //判断堆是否已经满
cerr << "Heap Fulled" << endl;
return false;
}
heap[currentSize] = x; //将x元素插入到数组最后
siftUp(currentSize);
currentSize++; //对当前大小增加1
return true;
}
template<class T>
bool MinHeap<T>::removeMin(T& x) {
if (0 == currentSize) {
cout << "Heap Tmptyed" << endl;
return false;
}
x = heap[0];
heap[0] = heap[currentSize - 1];
currentSize--;
siftDown(0, currentSize - 1); //借助函数对堆再一次调整
return true;
}
template<class T>
void MinHeap<T>::siftDown(int start, int m) {
int i = start;
int j = 2 * i + 1; //通过公式2x+1求得x左子女位置
T temp = heap[i]; //temp记录原来的的数据
while (j <= m) {
if (j < m && heap[j] > heap[j + 1]) {
j = j + 1; //j指向左右子女中较小的一个
}
if (heap[j] >= temp) {
break;
}
else {
heap[i] = heap[j];
i = j;
j = 2 * i + 1;
}
}
heap[i] = temp;
}
template<class T>
void MinHeap<T>::siftUp(int start) {
int j = start;
int i = (j - 1) / 2;
T temp = heap[j];
while (j > 0) {
if (heap[i] <= temp) {
break;
}
else {
heap[j] = heap[i];
j = i;
i = (j - 1) / 2;
}
}
heap[j] = temp;
}
int main()
{
return 0;
}
标签:int,void,最小,start,heap,MinHeap,数据结构,currentSize 来源: https://blog.csdn.net/github_50047554/article/details/113802209