其他分享
首页 > 其他分享> > 数据挖掘实践(24):实战-- 建筑能源得分预测报告(二)

数据挖掘实践(24):实战-- 建筑能源得分预测报告(二)

作者:互联网

3 特征工程

3.1 特征变换

import warnings
warnings.filterwarnings("ignore")

# 所有的数值数据拿到手
numeric_subset = data.select_dtypes('number')

# 遍历所有的数值数据
for col in numeric_subset.columns:
    # 如果score就是y值 ,就不做任何变换
    if col == 'score':
        next
    #剩下的不是y的话特征做log和开根号
    else: 
        numeric_subset['sqrt_' + col] = np.sqrt(numeric_subset[col])
        numeric_subset['log_' + col] = np.log(numeric_subset[col])

# Borough:自治镇
# Largest Property Use Type:
categorical_subset = data[['Borough', 'Largest Property Use Type']]

# One hot encode用到了读热编码get_dummies 
categorical_subset = pd.get_dummies(categorical_subset)



#      合并数组     一个是数值的,      一个热度编码的
features = pd.concat([numeric_subset, categorical_subset], axis = 1)

features = features.dropna(subset = ['score'])

# sort_values()做一下排序
correlations = features.corr()['score'].dropna().sort_values()
#sqrt结尾的变幻后就是sqrt_,log结尾的变幻后就是log_
# 这些都是负的
correlations.head(15)

#Weather Normalized Site EUI (kBtu/ft²)和转换后sqrt_Weather Normalized Site EUI (kBtu/ft²)没啥变化,所以没有价值
#都差不多,没有明显的趋势,
Site EUI (kBtu/ft²)                                            -0.723864
Weather Normalized Site EUI (kBtu/ft²)                         -0.713993
sqrt_Site EUI (kBtu/ft²)                                       -0.699817
sqrt_Weather Normalized Site EUI (kBtu/ft²)                    -0.689019
sqrt_Weather Normalized Source EUI (kBtu/ft²)                  -0.671044
sqrt_Source EUI (kBtu/ft²)                                     -0.669396
Weather Normalized Source EUI (kBtu/ft²)                       -0.645542
Source EUI (kBtu/ft²)                                          -0.641037
log_Source EUI (kBtu/ft²)                                      -0.622892
log_Weather Normalized Source EUI (kBtu/ft²)                   -0.620329
log_Site EUI (kBtu/ft²)                                        -0.612039
log_Weather Normalized Site EUI (kBtu/ft²)                     -0.601332
log_Weather Normalized Site Electricity Intensity (kWh/ft²)    -0.424246
sqrt_Weather Normalized Site Electricity Intensity (kWh/ft²)   -0.406669
Weather Normalized Site Electricity Intensity (kWh/ft²)        -0.358394
Name: score, dtype: float64
# 后15位下面是正的 
correlations.tail(15)
sqrt_Order                                                         0.028662
Borough_Queens                                                     0.029545
Largest Property Use Type_Supermarket/Grocery Store                0.030038
Largest Property Use Type_Residence Hall/Dormitory                 0.035407
Order                                                              0.036827
Largest Property Use Type_Hospital (General Medical & Surgical)    0.048410
Borough_Brooklyn                                                   0.050486
log_Community Board                                                0.055495
Community Board                                                    0.056612
sqrt_Community Board                                               0.058029
sqrt_Council District                                              0.060623
log_Council District                                               0.061101
Council District                                                   0.061639
Largest Property Use Type_Office                                   0.158484
score                                                              1.000000
Name: score, dtype: float64

3.2 双变量绘图

import warnings
warnings.filterwarnings("ignore")
figsize(12, 10)

# 能源得分与城镇区域之间的关系
features['Largest Property Use Type'] = data.dropna(subset = ['score'])['Largest Property Use Type']

# Largest Property Use Type 最大财产使用类型 ,isin()接受一个列表,判断该列中4个属性是否在列表中
features = features[features['Largest Property Use Type'].isin(types)]

# hue = 'Largest Property Use Type'是4个种类变量 ,4个颜色
sns.lmplot('Site EUI (kBtu/ft²)', 'score', 
           # 种类变量,有4个种类,右下角hue是有4个种类变量,
          hue = 'Largest Property Use Type', data = features,
          scatter_kws = {'alpha': 0.8, 's': 60}, fit_reg = False,
          size = 12, aspect = 1.2);

# Plot labeling
plt.xlabel("Site EUI", size = 28)
plt.ylabel('Energy Star Score', size = 28)
plt.title('Energy Star Score vs Site EUI', size = 36);

3.3 剔除共线特征

#原始数据备份一下copy(),修改后数据后保持原数据不变
features = data.copy()

# select_dtypes():根据数据类型选择特征,number表示数值型特征
numeric_subset = data.select_dtypes('number')

# 遍历特征是数值型在一个列表中
for col in numeric_subset.columns:
    # 跳过能源得分就是咱们的目标值Y
    if col == 'score':
        next
    else:
        #numeric_subset()从某一个列中选择出符合某条件的数据或是相关的列
        numeric_subset['log_' + col] = np.log(numeric_subset[col])
        
# Borough:自治区镇
# 最大财产使用类型/多户家庭的a住宅区、办公区、酒店、不制冷的大仓库
categorical_subset = data[['Borough', 'Largest Property Use Type']]


categorical_subset = pd.get_dummies(categorical_subset)

#把所有数值型特征和治区镇以及最大财产的使用类型合并起来
features = pd.concat([numeric_subset, categorical_subset], axis = 1)

features.shape#有110个列,比原来的列多
(11319, 110)

#Weather Normalized Site EUI (kBtu/ft²):天气正常指数的使用强度
#Site EUI:能源使用强度


plot_data = data[['Weather Normalized Site EUI (kBtu/ft²)', 'Site EUI (kBtu/ft²)']].dropna()
#'bo':由点绘制的线
plt.plot(plot_data['Site EUI (kBtu/ft²)'], plot_data['Weather Normalized Site EUI (kBtu/ft²)'], 'bo')
#横轴是天气正常指数的使用强度 、 纵轴是能源使用强度
plt.xlabel('Site EUI'); plt.ylabel('Weather Norm EUI')
plt.title('Weather Norm EUI vs Site EUI, R = %0.4f' % np.corrcoef(data[['Weather Normalized Site EUI (kBtu/ft²)', 'Site EUI (kBtu/ft²)']].dropna(), rowvar=False)[0][1]);

 

 

def remove_collinear_features(x, threshold):
    y = x['score'] #在原始数据X中”score“当做y值
    x = x.drop(columns = ['score']) #除去标签值以外的当做特征
    # 多长运行,直到相关性小于阈值才稳定结束
    while True:
        # 计算一个矩阵 ,两两的相关系数
        corr_matrix = x.corr()
        
        for i in range(len(corr_matrix)):
            corr_matrix.iloc[i][i] = 0 # 将对角线上的相关系数置为0。避免自己跟自己计算相关系数一定大于阈值

        # 定义待删除的特征。
        drop_cols = []
        # col返回的是列名

        
        for col in corr_matrix:
            if col not in drop_cols: # A和B比 ,B和A比的相关系数一样,避免AB全删了
                # 取相关系数的绝对值。
                v = np.abs(corr_matrix[col]) # 取的是每一列的相关系数
                # 如果相关系数大于设置的阈值    
                if np.max(v) > threshold:
                    # 取出最大值对应的索引。
                    name = np.argmax(v) # 找到最大值的的列名
                    drop_cols.append(name)
         # 列表不为空,就删除,列表为空,符合条件,退出循环           
        if drop_cols:
            # 删除想删除的列
            x = x.drop(columns=drop_cols, axis=1)
        else:
            break

    # 指定标签
    x['score'] = y
               
    return x
# 设置阈值0.6 ,tem.values相关性的矩阵的向量大于0.6的
features = remove_collinear_features(features, 0.6);
# 删除
features  = features.dropna(axis=1, how = 'all')
features.shape #原来时110
(11319, 68)
features.shape
(11319, 68)

4 分割数据集

4.1 划分数据

# pandas:isna(): 如果参数的结果为#NaN, 则结果TRUE, 否则结果是FALSE。
no_score = features[features['score'].isna()]
# pandas:notnull()判断是否不是NaN
score = features[features['score'].notnull()]

print(no_score.shape)
print(score.shape)
(1858, 68)
(9461, 68)
features = score.drop(columns='score')
targets = pd.DataFrame(score['score'])

#np.inf :最大值      -np.inf:最小值  
features = features.replace({np.inf: np.nan, -np.inf: np.nan})


X, X_test, y, y_test = train_test_split(features, targets, test_size = 0.3, random_state = 42)

print(X.shape)
print(X_test.shape)
print(y.shape)
print(y_test.shape)
(6622, 67)
(2839, 67)
(6622, 1)
(2839, 1)

4.2 建立Baseline

# mae平均的绝对值 ,就是 (真实值 - 预测值) / n
#abs():绝对值 
def mae(y_true, y_pred):
    return np.mean(abs(y_true - y_pred))
baseline_guess = np.median(y)

print('The baseline guess is a score of %0.2f' % baseline_guess) # 中位数为66 
print("Baseline Performance on the test set: MAE = %0.4f" % mae(y_test, baseline_guess)) # MAE = 24.5164
The baseline guess is a score of 66.00
Baseline Performance on the test set: MAE = 24.5164

4.3 结果保存下来,建模再用

# Save the no scores, training, and testing data
no_score.to_csv('data/no_score.csv', index = False)
X.to_csv('data/training_features.csv', index = False)
X_test.to_csv('data/testing_features.csv', index = False)
y.to_csv('data/training_labels.csv', index = False)
y_test.to_csv('data/testing_labels.csv', index = False)

 

标签:24,subset,EUI,features,--,Site,score,数据挖掘,ft
来源: https://www.cnblogs.com/qiu-hua/p/14397665.html