其他分享
首页 > 其他分享> > 不定积分与定积分的计算

不定积分与定积分的计算

作者:互联网

Contents

不定积分与定积分的计算

一、不定积分

原函数的定义:

​ 设 F ( x ) F(x) F(x) , f ( x ) f(x) f(x) 在区间 D D D 上有定义,如果 F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x) ,则称 F ( x ) F(x) F(x) 为 f ( x ) f(x) f(x) 的一个原函数。

不定积分的定义:

​ 设 F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x) ,则称 f ( x ) f(x) f(x) 的所有原函数为 f ( x ) f(x) f(x) 的不定积分,记作 ∫ f ( x ) d x = F ( x ) + C \displaystyle\int f(x)dx=F(x)+C ∫f(x)dx=F(x)+C

不定积分的性质:

​ 设 f ( x ) f(x) f(x) , g ( x ) g(x) g(x) 存在原函数,则

​ (1) ( ∫ f ( x ) d x ) ′ = f ( x ) (\displaystyle\int f(x)dx)'=f(x) (∫f(x)dx)′=f(x)

​ (2) ∫ f ′ ( x ) d x = f ( x ) + C \displaystyle\int f'(x)dx=f(x)+C ∫f′(x)dx=f(x)+C

​ (3) ∫ ( f ( x ) + g ( x ) ) d x = ∫ f ( x ) d x + ∫ g ( x ) d x \displaystyle\int(f(x)+g(x))dx=\displaystyle\int f(x)dx+\displaystyle\int g(x)dx ∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx

​ (4) ∫ k ⋅ f ( x ) d x = k ⋅ ∫ f ( x ) d x \displaystyle\int k\cdot f(x)dx=k\cdot \displaystyle\int f(x)dx ∫k⋅f(x)dx=k⋅∫f(x)dx

二、不定积分的计算

1. 直接积分法

利用不定积分的性质和积分公式。

例 1. ∫ tan ⁡ 2 x   d x \displaystyle\int\tan^2x\,dx ∫tan2xdx

I = ∫ ( sec ⁡ 2 x − 1 )   d x = tan ⁡ x − x + C . I=\displaystyle\int(\sec^2x-1)\,dx=\tan x-x+C. I=∫(sec2x−1)dx=tanx−x+C.

例 2. ∫ sec ⁡ 2 x csc ⁡ 2 x   d x \displaystyle\int\sec^2x\csc^2x\,dx ∫sec2xcsc2xdx
I = ∫ 1 sin ⁡ 2 x cos ⁡ 2 x   d x = ∫ sin ⁡ 2 x + cos ⁡ 2 x sin ⁡ 2 x cos ⁡ 2 x   d x = ∫ ( sec ⁡ 2 x + csc ⁡ 2 x ) d x = tan ⁡ x − cot ⁡ x + C . I=\displaystyle\int\frac{1}{\sin^2x\cos^2x}\,dx=\displaystyle\int\frac{\sin^2x+\cos^2x}{\sin^2x\cos^2x}\,dx=\displaystyle\int(\sec^2x+\csc^2x)dx=\tan x-\cot x+C. I=∫sin2xcos2x1​dx=∫sin2xcos2xsin2x+cos2x​dx=∫(sec2x+csc2x)dx=tanx−cotx+C.

例 3. ∫ x 3 − 2 x 3 + x + 6 1 + x 2   d x \displaystyle\int\frac{x^3-2x^3+x+6}{1+x^2}\,dx ∫1+x2x3−2x3+x+6​dx

I = ∫ ( x − 2 + 8 1 + x 2 )   d x = 1 2 x 2 − 2 x + 8 arctan ⁡ x + C . I=\displaystyle\int(x-2+\frac{8}{1+x^2})\,dx=\frac{1}{2}x^2-2x+8\arctan x+C. I=∫(x−2+1+x28​)dx=21​x2−2x+8arctanx+C.

例 4. ∫ max ⁡ { x ,   2 x − 1 }   d x \displaystyle\int\max\{x,\,2x-1\}\,dx ∫max{x,2x−1}dx

当 x ≥ 1 x\geq1 x≥1 时, I = ∫ ( 2 x − 1 ) d x = x 2 − x + C I=\displaystyle\int(2x-1)dx=x^2-x+C I=∫(2x−1)dx=x2−x+C

当 x < 1 x<1 x<1 时, I = ∫ x   d x = 1 2 x 2 + C I=\displaystyle\int x\,dx=\frac{1}{2}x^2+C I=∫xdx=21​x2+C

由于 F ( x ) F(x) F(x) 连续,则

F ( x ) = { x 2 − x + C , x ≥ 1 1 2 x 2 − 1 2 + C , x < 1 . F(x)= \left\{ \begin{array}{lll} x^2-x+C & , & x\geq1 \\ \displaystyle\frac{1}{2}x^2-\frac{1}{2}+C & , & x<1 \end{array} \right. . F(x)={x2−x+C21​x2−21​+C​,,​x≥1x<1​.

2. 凑微分法(第一类换元)

∫ f ( φ ( x ) ) φ ′ ( x ) d x = ∫ f ( φ ( x ) )   d ( φ ( x ) ) = F ( φ ( x ) ) + C \int f(\varphi(x))\varphi'(x)dx=\int f(\varphi(x))\,d(\varphi(x))=F(\varphi(x))+C ∫f(φ(x))φ′(x)dx=∫f(φ(x))d(φ(x))=F(φ(x))+C

例 5. ∫ ln ⁡ x x d x \displaystyle\int\frac{\ln x}{x}dx ∫xlnx​dx

I = ∫ ln ⁡ x   d ( ln ⁡ x ) = 1 2 ( ln ⁡ x ) 2 + C . I=\displaystyle\int\ln x\,d(\ln x)=\frac{1}{2}(\ln x)^2+C. I=∫lnxd(lnx)=21​(lnx)2+C.

例 6. ∫ x a 2 − x 2   d x \displaystyle\int\frac{x}{\sqrt{a^2-x^2}}\,dx ∫a2−x2 ​x​dx

I = − 1 2 ∫ d ( a 2 − x 2 ) a 2 − x 2 = − a 2 − x 2 + C . I=-\displaystyle\frac{1}{2}\int\frac{d(a^2-x^2)}{\sqrt{a^2-x^2}}=-\sqrt{a^2-x^2}+C. I=−21​∫a2−x2 ​d(a2−x2)​=−a2−x2 ​+C.

例 7. ∫ d x x ( 1 + x ) \displaystyle\int\frac{dx}{\sqrt{x}(1+x)} ∫x ​(1+x)dx​

I = ∫ 2   d ( x ) 1 + ( x ) 2 = 2 arctan ⁡ ( x ) + C . I=\displaystyle\int\frac{2\ d(\sqrt{x})}{1+(\sqrt{x})^2}=2\arctan(\sqrt{x})+C. I=∫1+(x ​)22 d(x ​)​=2arctan(x ​)+C.

例 8. ∫ 1 a 2 + x 2   d x \displaystyle\int\frac{1}{a^2+x^2}\,dx ∫a2+x21​dx (公式16)

I = 1 a 2 ∫ a ⋅ d ( x a ) 1 + ( x a ) 2 = 1 a arctan ⁡ x a + C . I=\displaystyle\frac{1}{a^2}\int\frac{a\cdot d(\displaystyle\frac{x}{a})}{1+(\displaystyle\frac{x}{a})^2}=\frac{1}{a}\arctan\frac{x}{a}+C. I=a21​∫1+(ax​)2a⋅d(ax​)​=a1​arctanax​+C.

例 9. ∫ tan ⁡ x   d x \displaystyle\int\tan x\,dx ∫tanxdx (公式17)

I = ∫ sin ⁡ x cos ⁡ x   d x = − ∫ d ( cos ⁡ x ) cos ⁡ x = − ln ⁡ ∣ cos ⁡ x ∣ + C . I=\displaystyle\int\frac{\sin x}{\cos x}\,dx=-\int\frac{d(\cos x)}{\cos x}=-\ln|\cos x|+C. I=∫cosxsinx​dx=−∫cosxd(cosx)​=−ln∣cosx∣+C.

3. 变量代换法(第二类换元)

通过变量代换化简被积函数
F ( x ) = ∫ f ( x ) d x = ∫ f ( φ ( t ) ) φ ′ ( t ) d t   ≜ ∫ g ( t ) d t = G ( t ) + C = G ( φ − 1 ( x ) ) + C F(x)=\int f(x)dx=\int f(\varphi(t))\varphi'(t)dt\ \boldsymbol{\triangleq}\int g(t)dt=G(t)+C=G(\varphi^{-1}(x))+C F(x)=∫f(x)dx=∫f(φ(t))φ′(t)dt ≜∫g(t)dt=G(t)+C=G(φ−1(x))+C

题型 1:根式变换

例 10. ∫ d x 1 + 1 + x \displaystyle\int \frac{dx}{1+\sqrt{1+x}} ∫1+1+x ​dx​

设 1 + x = u \displaystyle\sqrt{1+x}=u 1+x ​=u ,则 x = u 2 − 1 x=u^2-1 x=u2−1 , d x = 2 u   d u dx=2u\,du dx=2udu

I = ∫ 2 u 1 + u   d u = ∫ ( 2 − 2 1 + u )   d u = 2 u − 2 ln ⁡ ∣ 1 + u ∣ + C = 2 1 + x − 2 ln ⁡ ( 1 + 1 + x ) + C I=\displaystyle\int\frac{2u}{1+u}\,du=\displaystyle\int(2-\frac{2}{1+u})\,du=2u-2\ln|1+u|+C=2\sqrt{1+x}-2\ln(1+\sqrt{1+x})+C I=∫1+u2u​du=∫(2−1+u2​)du=2u−2ln∣1+u∣+C=21+x ​−2ln(1+1+x ​)+C

例 11. ∫ d x x + x 3 \displaystyle\int\frac{dx}{\sqrt{x}+\sqrt[3]{x}} ∫x ​+3x ​dx​

设 x 6 = u \displaystyle\sqrt[6]{x}=u 6x ​=u ,则 x = u 6 x=u^6 x=u6 , d x = 6 u 5   d u dx=6u^5\,du dx=6u5du
I =   ∫ 6 u 5 u 3 + u 2   d u =   6 ∫ u 3 u + 1   d u =   6 ∫ ( u 2 − u + 1 − 1 u + 1 )   d u =   2 u 3 − 3 u 2 + 6 u − 6 ln ⁡ ∣ 1 + u ∣ + C =   2 x − 3 x 3 + 6 x 6 − 6 ln ⁡ ( 1 + x 6 ) + C . \begin{aligned} I=&\ \displaystyle\int\frac{6u^5}{u^3+u^2}\,du \\ =&\ 6\displaystyle\int\frac{u^3}{u+1}\,du \\ =&\ 6\displaystyle\int(u^2-u+1-\frac{1}{u+1})\,du \\ =&\ 2u^3-3u^2+6u-6\ln|1+u|+C \\ =&\ 2\sqrt{x}-3\sqrt[3]{x}+6\sqrt[6]{x}-6\ln(1+\sqrt[6]{x})+C. \end{aligned} I=====​ ∫u3+u26u5​du 6∫u+1u3​du 6∫(u2−u+1−u+11​)du 2u3−3u2+6u−6ln∣1+u∣+C 2x ​−33x ​+66x ​−6ln(1+6x ​)+C.​

题型 2:三角变换

例 12. ∫ 1 x 2 + a 2   d x \displaystyle\int\frac{1}{\sqrt{x^2+a^2}}\,dx ∫x2+a2 ​1​dx (公式23)

设 x = a tan ⁡ t x=a\tan t x=atant ,则 d x = a sec ⁡ 2 t   d t dx=a\sec^2t\,dt dx=asec2tdt

I =   ∫ a sec ⁡ 2 t a sec ⁡ t   d t =   ∫ sec ⁡ t   d t =   ln ⁡ ∣ sec ⁡ t + tan ⁡ t ∣ + C =   ln ⁡ ∣ x + x 2 + a 2 a ∣ + C =   ln ⁡ ( x + x 2 + a 2 ) + C . \begin{aligned} I=&\ \displaystyle\int\frac{a\sec^2t}{a\sec t}\,dt \\ =&\ \displaystyle\int \sec t\,dt \\ =&\ \ln|\sec t+\tan t|+C \\ =&\ \displaystyle\ln\bigg|\frac{x+\sqrt{x^2+a^2}}{a}\bigg|+C \\ =&\ \ln(x+\sqrt{x^2+a^2})+C. \end{aligned} I=====​ ∫asectasec2t​dt ∫sectdt ln∣sect+tant∣+C ln∣∣∣∣​ax+x2+a2 ​​∣∣∣∣​+C ln(x+x2+a2 ​)+C.​

例 13. ∫ a 2 − x 2   d x \displaystyle\int\sqrt{a^2-x^2}\,dx ∫a2−x2 ​dx (公式27)

设 x = a sin ⁡ t x=a\sin t x=asint ,则 d x = a cos ⁡ t   d t dx=a\cos t\,dt dx=acostdt
I =   ∫ a 2 cos ⁡ 2 t   d t =   a 2 ∫ 1 + cos ⁡ 2 t 2   d t =   a 2 ( 1 2 t + 1 4 sin ⁡ 2 t ) + C =   a 2 2 arcsin ⁡ x a + x 2 a 2 − x 2 + C . \begin{aligned} I=&\ \displaystyle\int a^2\cos^2t\,dt \\ =&\ a^2\displaystyle\int\frac{1+\cos2t}{2} \,dt\\ =&\ \displaystyle a^2(\frac{1}{2}t+\frac{1}{4}\sin2t)+C \\ =&\ \displaystyle\frac{a^2}{2}\arcsin\frac{x}{a}+\frac{x}{2}\sqrt{a^2-x^2}+C. \end{aligned} I====​ ∫a2cos2tdt a2∫21+cos2t​dt a2(21​t+41​sin2t)+C 2a2​arcsinax​+2x​a2−x2 ​+C.​

例 14. ∫ d x x 2 x 2 − 1 \displaystyle\int\frac{dx}{x^2\sqrt{x^2-1}} ∫x2x2−1 ​dx​

设 x = sec ⁡ t x=\sec t x=sect ,则 d x = sec ⁡ t tan ⁡ t   d t dx=\sec t\tan t\,dt dx=secttantdt

I = ∫ sec ⁡ t tan ⁡ t sec ⁡ 2 t tan ⁡ t   d t = ∫ cos ⁡ t   d t = sin ⁡ t + C = x 2 − 1 x + C . I=\displaystyle\int\frac{\sec t\tan t}{\sec^2t\tan t}\,dt=\displaystyle\int\cos t\,dt=\sin t+C=\frac{\sqrt{x^2-1}}{x}+C. I=∫sec2ttantsecttant​dt=∫costdt=sint+C=xx2−1 ​​+C.

题型 3:倒数变换

当分母的次数远远比分子的次数高时,至少两次以上,则考虑令 x = 1 t x=\displaystyle\frac{1}{t} x=t1​ 。

变换之后一般有两种思路:简化计算;解方程(定积分常见)。

例 15. ∫ d x x 2 x 2 − 1 \displaystyle\int\frac{dx}{x^2\sqrt{x^2-1}} ∫x2x2−1 ​dx​

设 x = 1 t x=\dfrac 1t x=t1​,则 d x = − 1 t 2   d t dx=-\dfrac1{t^2}\,dt dx=−t21​dt,
I =   ∫ t 2 t 2 1 − t 2 ⋅ ( − 1 t 2 )   d t =   ∫ − t 1 − t 2   d t =   ∫ d ( 1 − t 2 ) 2 1 − t 2 =   1 − t 2 + C =   x 2 − 1 x + C . \begin{aligned} I=&\ \int t^2\sqrt{\frac{t^2}{1-t^2}}\cdot(-\frac{1}{t^2})\,dt\\ =&\ \int-\frac{t}{\sqrt{1-t^2}}\,dt\\ =&\ \int\frac{d(1-t^2)}{2\sqrt{1-t^2}}\\ =&\ \sqrt{1-t^2}+C\\ =&\ \frac{\sqrt{x^2-1}}{x}+C. \end{aligned} I=====​ ∫t21−t2t2​ ​⋅(−t21​)dt ∫−1−t2 ​t​dt ∫21−t2 ​d(1−t2)​ 1−t2 ​+C xx2−1 ​​+C.​

例 16. ∫ d x 1 + x 3 \displaystyle\int\frac{dx}{1+x^3} ∫1+x3dx​

设 I = ∫ d x 1 + x 3 I=\displaystyle\int\frac{{\rm d}x}{1+x^3} I=∫1+x3dx​ ,令 x = 1 t x=\dfrac 1t x=t1​,则 d x = − 1 t 2   d t dx=-\dfrac1{t^2}\,dt dx=−t21​dt ,

设 J = ∫ t 1 + t 3   d t = ∫ x 1 + x 3   d x J=\displaystyle\int\frac{t}{1+t^3}\,dt=\displaystyle\int\frac{x}{1+x^3}\,dx J=∫1+t3t​dt=∫1+x3x​dx ,
I + J =   ∫ d x 1 − x + x 2 =   ∫ d ( x − 1 2 ) ( x − 1 2 ) 2 + 3 4 =   2 3 arctan ⁡ 2 x − 1 3 + C . I − J =   ∫ 1 − x + x 2 − x 2 1 + x 3   d x =   ∫ d x 1 + x − ∫ x 2 1 + x 3   d x =   ln ⁡ ∣ x + 1 ∣ − 1 3 ln ⁡ ∣ x 3 + 1 ∣ + C =   2 3 ln ⁡ ∣ x + 1 ∣ − 1 3 ln ⁡ ∣ x 2 − x + 1 ∣ + C . ∴ I =   1 3 ln ⁡ ∣ x + 1 ∣ − 1 6 ln ⁡ ∣ x 2 − x + 1 ∣ + 3 3 arctan ⁡ 2 x − 1 3 + C . \begin{aligned} I+J=&\ \int\frac{dx}{1-x+x^2} \\ =&\ \int\frac{d(x-\dfrac{1}{2})}{(x-\dfrac{1}{2})^2+\dfrac{3}{4}}\\ =&\ \dfrac{2}{\sqrt{3}}\arctan\dfrac{2x-1}{\sqrt{3}}+C.\\ I-J=&\ \int\frac{1-x+x^2-x^2}{1+x^3}\,dx \\ =&\ \int\frac{dx}{1+x}-\int\frac{x^2}{1+x^3}\,dx \\ =&\ \ln|x+1|-\dfrac{1}{3}\ln|x^3+1|+C \\ =&\ \frac23\ln|x+1|-\frac13\ln|x^2-x+1|+C. \\ \therefore I=&\ \frac13\ln|x+1|-\frac16\ln|x^2-x+1|+\frac{\sqrt 3}3\arctan\frac{2x-1}{\sqrt 3} +C. \end{aligned} I+J===I−J====∴I=​ ∫1−x+x2dx​ ∫(x−21​)2+43​d(x−21​)​ 3 ​2​arctan3 ​2x−1​+C. ∫1+x31−x+x2−x2​dx ∫1+xdx​−∫1+x3x2​dx ln∣x+1∣−31​ln∣x3+1∣+C 32​ln∣x+1∣−31​ln∣x2−x+1∣+C. 31​ln∣x+1∣−61​ln∣x2−x+1∣+33 ​​arctan3 ​2x−1​+C.​

例 17. ∫ d x x 4 ( 1 + x 2 ) \displaystyle\int\frac{dx}{x^4(1+x^2)} ∫x4(1+x2)dx​

设 x = 1 t x=\dfrac 1t x=t1​,则 d x = − 1 t 2   d t dx=-\dfrac1{t^2}\,dt dx=−t21​dt
I =   ∫ t 4 1 + 1 t 2 ⋅ ( − 1 t 2 )   d t =   − ∫ t 4 1 + t 2   d t =   − ∫ ( t 2 − 1 + 1 1 + t 2 )   d t =   − 1 3 t 3 + t − arctan ⁡ t + C =   − 1 3 x 2 + 1 x − arctan ⁡ 1 x + C . \begin{aligned} I=&\ \int\frac{t^4}{1+\dfrac{1}{t^2}}\cdot(-\dfrac{1}{t^2})\,dt \\ =&\ -\int\frac{t^4}{1+t^2}\,dt \\ =&\ -\int(t^2-1+\frac{1}{1+t^2})\,dt \\ =&\ -\frac13t^3+t-\arctan t+C \\ =&\ -\frac1{3x^2}+\frac{1}{x}-\arctan\frac1x+C. \end{aligned} I=====​ ∫1+t21​t4​⋅(−t21​)dt −∫1+t2t4​dt −∫(t2−1+1+t21​)dt −31​t3+t−arctant+C −3x21​+x1​−arctanx1​+C.​

4. 分部积分法

设 u = u ( x ) u=u(x) u=u(x) , v = v ( x ) v=v(x) v=v(x) 为可微函数,则有
∫ u d v = u v − ∫ v d u \int udv=uv-\int vdu ∫udv=uv−∫vdu
一般用于被积函数为反三角函数、三角函数、对数函数、指数函数和幂函数的乘积的计算,含 n n n 递归式的证明和通项的解,抽象函数的综合题等等。

目的:降次,寻找不变量,化有理式等。

例 18. ∫ x 2 e x   d x \displaystyle\int x^2e^x\,dx ∫x2exdx

I =   ∫ x 2   d ( e x ) =   x 2 e x − ∫ e x ( 2 x )   d x =   x 2 e x − 2 ∫ x   d ( e x ) =   x 2 e x − 2 x e x + 2 ∫ e x   d x =   ( x 2 − 2 x + 2 ) e x + C . \begin{aligned} I=&\ \int x^2\,d(e^x) \\ =&\ x^2e^x-\int e^x(2x)\,dx \\ =&\ x^2e^x-2\int x\,d(e^x) \\ =&\ x^2e^x-2xe^x+2\int e^x\,dx \\ =&\ (x^2-2x+2)e^x+C. \end{aligned} I=====​ ∫x2d(ex) x2ex−∫ex(2x)dx x2ex−2∫xd(ex) x2ex−2xex+2∫exdx (x2−2x+2)ex+C.​

例 19. ∫ ln ⁡ ( 1 + x 2 )   d x \displaystyle\int \ln(1+x^2)\,dx ∫ln(1+x2)dx
I =   x ln ⁡ ( 1 + x 2 ) − ∫ x ⋅ 2 x 1 + x 2   d x =   x ln ⁡ ( 1 + x 2 ) − 2 ∫ ( 1 − 1 1 + x 2 )   d x =   x ln ⁡ ( 1 + x 2 ) − 2 x + 2 arctan ⁡ x + C . \begin{aligned} I=&\ x\ln(1+x^2)-\int x\cdot\frac{2x}{1+x^2}\,dx \\ =&\ x\ln(1+x^2)-2\int(1-\frac{1}{1+x^2})\,dx \\ =&\ x\ln(1+x^2)-2x+2\arctan x+C. \end{aligned} I===​ xln(1+x2)−∫x⋅1+x22x​dx xln(1+x2)−2∫(1−1+x21​)dx xln(1+x2)−2x+2arctanx+C.​

例 20. ∫ x 2 arctan ⁡ x   d x \displaystyle\int x^2\arctan x\,dx ∫x2arctanxdx
I =   1 3 ∫ arctan ⁡ x   d ( x 3 ) =   1 3 x 3 arctan ⁡ x − 1 3 ∫ x 3 1 + x 2   d x =   1 3 x 3 arctan ⁡ x − 1 6 ∫ x 2 1 + x 2   d ( x 2 ) =   1 3 x 3 arctan ⁡ x − 1 6 ∫ ( 1 − 1 1 + x 2 )   d ( x 2 ) =   1 3 x 3 arctan ⁡ x − 1 6 x 2 + 1 6 ln ⁡ ( 1 + x 2 ) + C . \begin{aligned} I=&\ \frac13\int\arctan x\,d(x^3) \\ =&\ \frac13x^3\arctan x-\frac13\int\frac{x^3}{1+x^2}\,dx \\ =&\ \frac13x^3\arctan x-\frac16\int\frac{x^2}{1+x^2}\,d(x^2) \\ =&\ \frac13x^3\arctan x-\frac16\int(1-\frac{1}{1+x^2})\,d(x^2) \\ =&\ \frac13x^3\arctan x-\frac16x^2+\frac16\ln(1+x^2)+C. \\ \end{aligned} I=====​ 31​∫arctanxd(x3) 31​x3arctanx−31​∫1+x2x3​dx 31​x3arctanx−61​∫1+x2x2​d(x2) 31​x3arctanx−61​∫(1−1+x21​)d(x2) 31​x3arctanx−61​x2+61​ln(1+x2)+C.​

例 21. ∫ x sin ⁡ 3 x   d x \displaystyle\int x\sin 3x\,dx ∫xsin3xdx
I =   − 1 3 ∫ x   d ( cos ⁡ 3 x ) =   − 1 3 x cos ⁡ 3 x + 1 3 ∫ cos ⁡ 3 x   d x =   − 1 3 x cos ⁡ 3 x + 1 9 sin ⁡ 3 x + C . \begin{aligned} I=&\ -\frac13\int x\,d(\cos3x) \\ =&\ -\frac13x\cos3x+\frac13\int\cos3x\,dx \\ =&\ -\frac13x\cos3x+\frac19\sin3x+C. \end{aligned} I===​ −31​∫xd(cos3x) −31​xcos3x+31​∫cos3xdx −31​xcos3x+91​sin3x+C.​

例 22. 证明: I n = ∫ tan ⁡ n x   d x = tan ⁡ n − 1 x n − 1 − I n − 2 I_n=\displaystyle\int\tan^nx\,dx=\frac{\tan^{n-1}x}{n-1}-I_{n-2} In​=∫tannxdx=n−1tann−1x​−In−2​
I n =   ∫ tan ⁡ n x   d x =   ∫ tan ⁡ n − 2 x ( 1 + tan ⁡ 2 x )   d x − ∫ tan ⁡ n − 2 x   d x =   ∫ tan ⁡ n − 2 x   d ( tan ⁡ x ) − I n − 2 =   tan ⁡ n − 1 x n − 1 − I n − 2 . \begin{aligned} I_n=&\ \int\tan^nx\,dx \\ =&\ \int\tan^{n-2}x(1+\tan^2x)\,dx-\int\tan^{n-2}x\,dx \\ =&\ \int\tan^{n-2}x\,d(\tan x)-I_{n-2} \\ =&\ \frac{\tan^{n-1}x}{n-1}-I_{n-2} . \end{aligned} In​====​ ∫tannxdx ∫tann−2x(1+tan2x)dx−∫tann−2xdx ∫tann−2xd(tanx)−In−2​ n−1tann−1x​−In−2​.​

例 23. 设 ∫ x   f ( x )   d x = 1 − x 2 + C \displaystyle\int x\,f(x)\,dx=\sqrt{1-x^2}+C ∫xf(x)dx=1−x2 ​+C ,求 ∫ x 2 f ( x )   d x \displaystyle\int x^2f(x)\,dx ∫x2f(x)dx

(1) 求导
x   f ( x ) = − x 1 − x 2 x\,f(x)=-\frac{x}{\sqrt{1-x^2}} xf(x)=−1−x2 ​x​

f ( x ) = − 1 1 − x 2 f(x)=-\frac{1}{\sqrt{1-x^2}} f(x)=−1−x2 ​1​

(2) 积分
I =   ∫ − x 2 1 − x 2   d x = x = sin ⁡ t   − ∫ sin ⁡ 2 t   d t =   − t 2 + 1 4 sin ⁡ 2 t + C =   − 1 2 arcsin ⁡ x + 1 2 x 1 − x 2 + C . \begin{aligned} I=&\ \int-\frac{x^2}{\sqrt{1-x^2}}\,dx \\ \xlongequal{x=\sin t}&\ -\int\sin^2t\,dt \\ =&\ -\frac{t}{2}+\frac{1}{4}\sin2t+C \\ =&\ -\frac12\arcsin x+\frac12x\sqrt{1-x^2}+C. \end{aligned} I=x=sint ==​ ∫−1−x2 ​x2​dx −∫sin2tdt −2t​+41​sin2t+C −21​arcsinx+21​x1−x2 ​+C.​

三、定积分

定积分的定义:

设 f ( x ) f(x) f(x) 是定义在闭区间 [ a ,   b ] [a,\,b] [a,b] 上的有界函数,在 [ a ,   b ] [a,\,b] [a,b] 中任意插入 n − 1 n-1 n−1 个分点:
a = x 0 < x 1 < x 2 < . . . < x n = b a=x_0<x_1<x_2<...<x_n=b a=x0​<x1​<x2​<...<xn​=b
将 [ a ,   b ] [a,\,b] [a,b] 分为 n n n 个子区间,其长度为 Δ x i = x i − x i − 1 \Delta x_i=x_i-x_{i-1} Δxi​=xi​−xi−1​ 。

在每个子区间上任取一点 ξ i \xi_i ξi​ ,作和式 ∑ i = 1 n f ( ξ i ) ⋅ Δ x i \displaystyle\sum_{i=1}^n f(\xi_i)\cdot\Delta x_i i=1∑n​f(ξi​)⋅Δxi​ ,称为积分和或黎曼和。

如果当子区间的最大长度 λ = max ⁡ 1 ≤ i ≤ n { Δ x i } → 0 \lambda=\displaystyle\max_{1\leq i\leq n}\{\Delta x_i\}\to0 λ=1≤i≤nmax​{Δxi​}→0 时,积分和的极限存在,且与区间 [ a ,   b ] [a,\,b] [a,b] 的分法和点 ξ i \xi_i ξi​ 的取法无关,则称函数 f ( x ) f(x) f(x) 在区间 [ a ,   b ] [a,\,b] [a,b] 上是可积的,记 ∫ a b f ( x )   d x = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \displaystyle\int_a^bf(x)\,dx=\lim_{\lambda\to0}\sum_{i=1}^nf(\xi_i)\Delta x_i ∫ab​f(x)dx=λ→0lim​i=1∑n​f(ξi​)Δxi​

定积分的性质:

(有限可加性) ∫ a b f ( x )   d x = ∫ a c f ( x )   d x + ∫ c b f ( x )   d x \displaystyle\int_a^bf(x)\,dx=\displaystyle\int_a^cf(x)\,dx+\displaystyle\int_c^bf(x)\,dx ∫ab​f(x)dx=∫ac​f(x)dx+∫cb​f(x)dx

(保号性)设 f ( x ) f(x) f(x) 在区间 [ a ,   b ] [a,\,b] [a,b] 上可积且 f ( x ) ≥ 0 f(x)\geq0 f(x)≥0 ,则 ∫ a b f ( x )   d x ≥ 0 \displaystyle\int_a^bf(x)\,dx\geq0 ∫ab​f(x)dx≥0

(绝对值不等式) 设 f ( x ) f(x) f(x) 在区间 [ a ,   b ] [a,\,b] [a,b] 上可积,则 ∣ ∫ a b f ( x )   d x ∣ ≤ ∫ a b ∣ f ( x ) ∣   d x \bigg|\displaystyle\int_a^bf(x)\,dx\bigg|\leq\int_a^b\big|f(x)\big|\,dx ∣∣∣∣​∫ab​f(x)dx∣∣∣∣​≤∫ab​∣∣​f(x)∣∣​dx

(估值不等式)设 f ( x ) f(x) f(x) 在区间 [ a ,   b ] [a,\,b] [a,b] 上可积,且 m ≤ f ( x ) ≤ M m\leq f(x)\leq M m≤f(x)≤M ,则 m ( b − a ) ≤ ∫ a b f ( x )   d x ≤ M ( b − a ) m(b-a)\leq\displaystyle\int_a^bf(x)\,dx\leq M(b-a) m(b−a)≤∫ab​f(x)dx≤M(b−a)

**(定积分中值定理)**设 f ( x ) f(x) f(x) 在 [ a ,   b ] [a,\,b] [a,b] 上连续,则 ∃ ξ ∈ ( a ,   b ) \exist\xi\in(a,\,b) ∃ξ∈(a,b) ,有 ∫ a b f ( x )   d x = f ( ξ ) ( b − a ) \displaystyle\int_a^bf(x)\,dx=f(\xi)(b-a) ∫ab​f(x)dx=f(ξ)(b−a)

(和式极限) ∫ 0 1 f ( x )   d x = lim ⁡ n → ∞ 1 n ∑ k = 1 n f ( k n ) \displaystyle\int_0^1f(x)\,dx=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^nf(\frac{k}{n}) ∫01​f(x)dx=n→∞lim​n1​k=1∑n​f(nk​)

变上限函数的导数:

设 f ( x ) f(x) f(x) 在 [ a ,   b ] [a,\,b] [a,b] 上连续,定义 F ( x ) = ∫ a x f ( t )   d t F(x)=\displaystyle\int_a^xf(t)\,dt F(x)=∫ax​f(t)dt ,则 F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x)

设 f ( x ) f(x) f(x) 在 R \R R 上连续, α ( x ) ,   β ( x ) \alpha(x),\ \beta(x) α(x), β(x) 在 R \R R 上可导,则
d d x ( ∫ α ( x ) β ( x ) f ( t )   d t ) = β ′ ( x ) f ( β ( x ) ) − α ′ ( x ) f ( α ( x ) ) \frac{d}{dx}\left(\int_{\alpha(x)}^{\beta(x)}f(t)\,dt\right)=\beta'(x)f\left(\beta(x)\right)-\alpha'(x)f(\alpha(x)) dxd​(∫α(x)β(x)​f(t)dt)=β′(x)f(β(x))−α′(x)f(α(x))

牛顿-莱布尼兹公式

设 f ( x ) f(x) f(x) 在 [ a ,   b ] [a,\,b] [a,b] 上连续,且 F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x) ,则
∫ a b f ( x )   d x = F ( b ) − F ( a ) ≜ F ( x ) ∣ a b \int_a^bf(x)\,dx=F(b)-F(a)\triangleq F(x)\bigg|_a^b ∫ab​f(x)dx=F(b)−F(a)≜F(x)∣∣∣∣​ab​

四、定积分的计算

1. 和式极限的计算

例 24. lim ⁡ n → ∞ ( 1 n 2 + 1 2 + 2 n 2 + 2 2 + . . . + n n 2 + n 2 ) \displaystyle\lim_{n\to\infty}(\frac{1}{n^2+1^2}+\frac{2}{n^2+2^2}+...+\frac{n}{n^2+n^2}) n→∞lim​(n2+121​+n2+222​+...+n2+n2n​)
S n = ∑ k = 1 n k n 2 + k 2 = 1 n ∑ k = 1 n k n 1 + ( k n ) 2 S_n=\displaystyle\sum_{k=1}^n\frac{k}{n^2+k^2}=\frac{1}{n}\sum_{k=1}^n\frac{\dfrac{k}{n}}{1+(\dfrac{k}{n})^2} Sn​=k=1∑n​n2+k2k​=n1​k=1∑n​1+(nk​)2nk​​
设 f ( x ) = x 1 + x 2 f(x)=\dfrac{x}{1+x^2} f(x)=1+x2x​ ,
lim ⁡ n → ∞ S n =   ∫ 0 1 x 1 + x 2   d x =   1 2 ln ⁡ ( 1 + x 2 ) ∣ 0 1 =   1 2 ln ⁡ 2. \begin{aligned} \lim_{n\to\infty}S_n=&\ \int_0^1\dfrac{x}{1+x^2}\,dx \\ =&\ \frac12\ln(1+x^2)\bigg|_0^1 \\ =&\ \frac12\ln2 . \end{aligned} n→∞lim​Sn​===​ ∫01​1+x2x​dx 21​ln(1+x2)∣∣∣∣​01​ 21​ln2.​

例 25. lim ⁡ n → ∞ 1 n ∑ k = 1 n e k n \displaystyle\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^ne^{\frac{k}{n}} n→∞lim​n1​k=1∑n​enk​

设 f ( x ) = e x f(x)=e^x f(x)=ex ,
lim ⁡ n → ∞ S n =   ∫ 0 1 e x   d x =   e x ∣ 0 1 =   e − 1. \begin{aligned} \lim_{n\to\infty}S_n=&\ \int_0^1e^x\,dx \\ =&\ e^x\bigg|_0^1 \\ =&\ e-1 . \end{aligned} n→∞lim​Sn​===​ ∫01​exdx ex∣∣∣∣​01​ e−1.​
另:
lim ⁡ n → ∞ S n =   lim ⁡ n → ∞ 1 n e 1 n ( 1 − e n n ) ( 1 − e 1 n ) =   lim ⁡ n → ∞ 1 n e 1 n ( 1 − e ) ( 1 − e 1 n ) =   e − 1. \begin{aligned} \lim_{n\to\infty}S_n=&\ \lim_{n\to\infty}\frac1n\frac{e^\frac{1}{n}(1-e^\frac{n}{n})}{(1-e^\frac{1}{n})} \\ =&\ \lim_{n\to\infty}\frac1n\frac{e^\frac{1}{n}(1-e)}{(1-e^\frac{1}{n})}\\ =&\ e-1 . \end{aligned} n→∞lim​Sn​===​ n→∞lim​n1​(1−en1​)en1​(1−enn​)​ n→∞lim​n1​(1−en1​)en1​(1−e)​ e−1.​

2. 直接积分法

应用牛顿-莱布尼兹公式,先求得原函数再代入端值。

例 26. ∫ − 1 0 x + 2 x 2 + 2 x + 2   d x \displaystyle\int_{-1}^0\frac{x+2}{x^2+2x+2}\,dx ∫−10​x2+2x+2x+2​dx
I =   ∫ − 1 0 x + 1 ( x + 1 ) 2 + 1   d x + ∫ − 1 0 1 ( x + 1 ) 2 + 1   d x =   1 2 ln ⁡ ( ( x + 1 ) 2 + 1 ) ) ∣ − 1 0 + arctan ⁡ ( x + 1 ) ∣ − 1 0 =   1 2 ln ⁡ 2 + π 4 . \begin{aligned} I=&\ \int_{-1}^0\frac{x+1}{(x+1)^2+1}\,dx+\int_{-1}^0\frac{1}{(x+1)^2+1}\,dx \\ =&\ \frac12\ln((x+1)^2+1))\bigg|_{-1}^0+\arctan(x+1)\bigg|_{-1}^0 \\ =&\ \frac12\ln2+\frac\pi4. \end{aligned} I===​ ∫−10​(x+1)2+1x+1​dx+∫−10​(x+1)2+11​dx 21​ln((x+1)2+1))∣∣∣∣​−10​+arctan(x+1)∣∣∣∣​−10​ 21​ln2+4π​.​

3. 换元积分法

注意换元换限

设 x = φ ( t ) x=\varphi(t) x=φ(t) , x ∈ [ a ,   b ]   ⟶   t ∈ [ α ,   β ] x\in[a,\,b] \ \longrightarrow\ t\in[\alpha,\,\beta] x∈[a,b] ⟶ t∈[α,β]
∫ a b f ( x )   d x = ∫ α β f ( φ ( t ) ) φ ′ ( t )   d t ≜ G ( t ) ∣ α β = G ( β ) − G ( α ) \int_a^bf(x)\,dx=\int_\alpha^\beta f(\varphi(t))\varphi'(t)\,dt\triangleq G(t)\bigg|_\alpha^\beta=G(\beta)-G(\alpha) ∫ab​f(x)dx=∫αβ​f(φ(t))φ′(t)dt≜G(t)∣∣∣∣​αβ​=G(β)−G(α)

题型 1:根式变换,三角变换,倒数变换同不定积分。

题型 2:线性变换

常用于特殊的积分区间或被积函数中存在线性变换的表达式。

常见形式

(1) 积分区间 [ 0 ,   b ] [0,\,b] [0,b] ,令 x = b − t x=b-t x=b−t 或 x = b 2 − t x=\displaystyle\frac{b}{2}-t x=2b​−t

(2) 积分区间 [ a ,   b ] [a,\,b] [a,b] ,令 x = a + b − t x=a+b-t x=a+b−t 或 x = a + b 2 − t x=\displaystyle\frac{a+b}{2}-t x=2a+b​−t

(3) 积分区间 [ − a ,   a ] [-a,\,a] [−a,a] ,令 x = − t x=-t x=−t

(4) 积分区间 [ 1 a ,   a ] [\displaystyle\frac{1}{a},\,a] [a1​,a] ,令 x = 1 t x=\displaystyle\frac{1}{t} x=t1​ ( a > 0 ) (a>0) (a>0)

例 27. ∫ 0 π 4 ln ⁡ ( 1 + tan ⁡ x )   d x \displaystyle\int_0^{\frac{\pi}{4}}\ln(1+\tan x)\,dx ∫04π​​ln(1+tanx)dx

设 t = π 4 − x t=\dfrac\pi4-x t=4π​−x
I =   ∫ 0 π 4 ln ⁡ ( 1 + 1 − tan ⁡ t 1 + tan ⁡ t )   d t =   ∫ 0 π 4 ln ⁡ ( 2 1 + tan ⁡ t )   d t =   π 4 ln ⁡ 2 − ∫ 0 π 4 ln ⁡ ( 1 + tan ⁡ t )   d t =   π 4 ln ⁡ 2 − I ∴ I =   π 8 ln ⁡ 2. \begin{aligned} I=&\ \int_{0}^{\frac\pi4} \ln(1+\dfrac{1-\tan t}{1+\tan t})\,dt \\ =&\ \int_{0}^{\frac\pi4} \ln(\dfrac{2}{1+\tan t})\,dt \\ =&\ \dfrac\pi4\ln2-\int_{0}^{\frac\pi4} \ln(1+\tan t)\,dt \\ =&\ \dfrac\pi4\ln2-I \\ \\ \therefore I=&\ \frac\pi8\ln2. \end{aligned} I====∴I=​ ∫04π​​ln(1+1+tant1−tant​)dt ∫04π​​ln(1+tant2​)dt 4π​ln2−∫04π​​ln(1+tant)dt 4π​ln2−I 8π​ln2.​

4. 对称区间上的定积分

题型 1 :被积函数为奇函数/偶函数
∫ − a a f ( x ) d x = ∫ 0 a [ f ( x ) + f ( − x ) ]   d x = { 0 , f ( x ) 为奇函数 2 ∫ 0 a f ( x ) d x , f ( x ) 为偶函数 \int_{-a}^af(x)dx=\int_{0}^a[f(x)+f(-x)]\,dx= \left\{ \begin{array}{lll} 0 & , & f(x)\text{为奇函数} \\ 2\displaystyle\int_0^af(x)dx & , & f(x)\text{为偶函数} \end{array} \right. ∫−aa​f(x)dx=∫0a​[f(x)+f(−x)]dx=⎩⎨⎧​02∫0a​f(x)dx​,,​f(x)为奇函数f(x)为偶函数​
题型 2 :分母具有如下形式:

设 f ( x ) f(x) f(x) 为偶函数
f ( x ) 1 + a x + f ( − x ) 1 + a − x = f ( x ) 1 + a x + f ( x ) ⋅ a x 1 + a x = f ( x ) \frac{f(x)}{1+a^x}+\frac{f(-x)}{1+a^{-x}}=\frac{f(x)}{1+a^x}+\frac{f(x)\cdot a^x}{1+a^x}=f(x) 1+axf(x)​+1+a−xf(−x)​=1+axf(x)​+1+axf(x)⋅ax​=f(x)

f ( x ) 1 − a x + f ( − x ) 1 − a − x = f ( x ) 1 − a x − f ( x ) ⋅ a x 1 − a x = f ( x ) \frac{f(x)}{1-a^x}+\frac{f(-x)}{1-a^{-x}}=\frac{f(x)}{1-a^x}-\frac{f(x)\cdot a^x}{1-a^x}=f(x) 1−axf(x)​+1−a−xf(−x)​=1−axf(x)​−1−axf(x)⋅ax​=f(x)

例 28. ∫ − π 2 π 2 ( 1 − cos ⁡ 2 x ) 3 2   d x \displaystyle\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(1-\cos^2x)^{\frac{3}{2}}\,dx ∫−2π​2π​​(1−cos2x)23​dx
I =   ∫ − π 2 π 2 ∣ sin ⁡ 3 x ∣   d x =   2 ∫ 0 π 2 sin ⁡ 3 x   d x =   − 2 ∫ 0 π 2 ( 1 − cos ⁡ 2 x )   d cos ⁡ x =   − ( 2 cos ⁡ x − 2 3 cos ⁡ 3 x ) ∣ 0 π 2 =   4 3 . \begin{aligned} I=&\ \displaystyle\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}|\sin^3x|\,dx \\ =&\ 2\int_0^{\frac{\pi}{2}}\sin^3x\,dx \\ =&\ -2\int_0^{\frac{\pi}{2}}(1-\cos^2x)\,d\cos x \\ =&\ -(2\cos x-\frac23\cos^3x)\bigg|_0^\frac\pi2 \\ =&\ \frac43. \end{aligned} I=====​ ∫−2π​2π​​∣sin3x∣dx 2∫02π​​sin3xdx −2∫02π​​(1−cos2x)dcosx −(2cosx−32​cos3x)∣∣∣∣​02π​​ 34​.​

例 29. ∫ − 1 1 ( x 2 ln ⁡ 2 − x 2 + x + 1 − x 2 )   d x \displaystyle\int_{-1}^1(x^2\ln\frac{2-x}{2+x}+\sqrt{1-x^2})\,dx ∫−11​(x2ln2+x2−x​+1−x2 ​)dx

x 2 ln ⁡ 2 − x 2 + x x^2\ln\dfrac{2-x}{2+x} x2ln2+x2−x​ 是奇函数, 1 − x 2 \sqrt{1-x^2} 1−x2 ​ 是偶函数
I =   2 ∫ 0 1 1 − x 2   d x = π 2 . \begin{aligned} I=&\ 2\int_0^1\sqrt{1-x^2}\,dx=\frac\pi2. \end{aligned} I=​ 2∫01​1−x2 ​dx=2π​.​

例 30. ∫ − 2 2 x 2 1 + e x   d x \displaystyle\int_{-2}^2\frac{x^2}{1+e^x}\,dx ∫−22​1+exx2​dx
I =   ∫ 0 2 ( x 2 1 + e x + ( − x ) 2 1 + e − x )   d x =   ∫ 0 2 x 2   d x =   8 3 . \begin{aligned} I=&\ \int_0^2\left(\frac{x^2}{1+e^x}+\frac{(-x)^2}{1+e^{-x}}\right)\,dx \\ =&\ \int_0^2x^2\,dx \\ =&\ \frac83. \end{aligned} I===​ ∫02​(1+exx2​+1+e−x(−x)2​)dx ∫02​x2dx 38​.​

例 31. ∫ − 1 1 x 2020 + 1 202 0 x + 1   d x \displaystyle\int_{-1}^1\frac{x^{2020}+1}{2020^x+1}\,dx ∫−11​2020x+1x2020+1​dx
I =   ∫ 0 1 ( x 2000 + 1 202 0 x + 1 + ( − x ) 2000 + 1 202 0 − x + 1 )   d x =   ∫ 0 1 ( x 2020 + 1 )   d x =   2022 2021 . \begin{aligned} I=&\ \int_0^1\left(\frac{x^{2000}+1}{2020^x+1}+\frac{(-x)^{2000}+1}{2020^{-x}+1}\right)\,dx \\ =&\ \int_0^1(x^{2020}+1)\,dx \\ =&\ \frac{2022}{2021}. \end{aligned} I===​ ∫01​(2020x+1x2000+1​+2020−x+1(−x)2000+1​)dx ∫01​(x2020+1)dx 20212022​.​

5. 分部积分法

设 u = u ( x ) u=u(x) u=u(x) , v = v ( x ) v=v(x) v=v(x) 均有连续导数,则有
∫ a b u d v = u v ∣ a b − ∫ a b v d u \int_a^b udv=uv\bigg|_a^b-\int_a^b vdu ∫ab​udv=uv∣∣∣∣​ab​−∫ab​vdu
常见于综合题

例 32. ∫ 0 1 ln ⁡ ( 1 + x 2 )   d x \displaystyle\int_0^1\ln(1+x^2)\,dx ∫01​ln(1+x2)dx
I =   x ⋅ ln ⁡ ( 1 + x 2 ) ∣ 0 1 − ∫ 0 1 x ⋅ 2 x 1 + x 2   d x =   ln ⁡ 2 − 2 ∫ 0 1 ( 1 − 1 1 + x 2 )   d x =   ln ⁡ 2 − 2 ( x − arctan ⁡ x ) ∣ 0 1 =   ln ⁡ 2 − 2 + π 2 . \begin{aligned} I=&\ x\cdot\ln(1+x^2)\bigg|_0^1- \int_0^1x\cdot\frac{2x}{1+x^2}\,dx \\ =&\ \ln2-2\int_0^1(1-\frac{1}{1+x^2})\,dx \\ =&\ \ln2-2(x-\arctan x)\bigg|_0^1 \\ =&\ \ln2-2+\frac\pi2. \end{aligned} I====​ x⋅ln(1+x2)∣∣∣∣​01​−∫01​x⋅1+x22x​dx ln2−2∫01​(1−1+x21​)dx ln2−2(x−arctanx)∣∣∣∣​01​ ln2−2+2π​.​

例 33. ∫ 0 1 x e x   d x \displaystyle\int_0^1xe^x\,dx ∫01​xexdx
I =   ∫ 0 1 x   d ( e x ) =   x ⋅ e x ∣ 0 1 − ∫ 0 1 e x   d x =   e − e x ∣ 0 1 =   1. \begin{aligned} I=&\ \int_0^1x\,d(e^x) \\ =&\ x\cdot e^x\bigg|_0^1- \int_0^1e^x\,dx \\ =&\ e-e^x\bigg|_0^1 \\ =&\ 1. \end{aligned} I====​ ∫01​xd(ex) x⋅ex∣∣∣∣​01​−∫01​exdx e−ex∣∣∣∣​01​ 1.​

例 34. 设 f ′ ′ ( x ) f''(x) f′′(x) 在 [ 0 ,   2 ] [0,\,2] [0,2] 上连续,且 f ( 0 ) = 1 f(0)=1 f(0)=1 , f ( 2 ) = 3 f(2)=3 f(2)=3, f ′ ( 2 ) = 5 f'(2)=5 f′(2)=5 ,求 ∫ 0 2 x f ′ ′ ( x )   d x \displaystyle\int_0^2xf''(x)\,dx ∫02​xf′′(x)dx
∫ 0 2 x f ′ ′ ( x )   d x =   ∫ 0 2 x   d ( f ′ ( x ) ) =   x f ′ ( x ) ∣ 0 2 − ∫ 0 2 f ′ ( x )   d x =   2 f ′ ( 2 ) − ( f ( 2 ) − f ( 0 ) ) =   2 × 5 − 3 + 1 =   8. \begin{aligned} \int_0^2xf''(x)\,dx=&\ \int_0^2x\,d(f'(x)) \\ =&\ xf'(x)\bigg|_0^2-\int_0^2f'(x)\,dx \\ =&\ 2f'(2)-(f(2)-f(0)) \\ =&\ 2\times5-3+1 \\ =&\ 8. \end{aligned} ∫02​xf′′(x)dx=====​ ∫02​xd(f′(x)) xf′(x)∣∣∣∣​02​−∫02​f′(x)dx 2f′(2)−(f(2)−f(0)) 2×5−3+1 8.​

例 35. (Wallis公式)设 I 0 = π 2 I_0=\displaystyle\frac{\pi}{2} I0​=2π​ , I 1 = 1 I_1=1 I1​=1 ,设 I n = ∫ 0 π 2 sin ⁡ n x   d x I_n=\displaystyle\int_0^{\frac{\pi}{2}}\sin^nx\,dx In​=∫02π​​sinnxdx , n ≥ 2 n\geq2 n≥2 ,则
I n = ∫ 0 π 2 sin ⁡ n x   d x = ∫ 0 π 2 cos ⁡ n x   d x = n − 1 n I n − 2 I_n=\displaystyle\int_0^{\frac{\pi}{2}}\sin^nx\,dx=\displaystyle\int_0^{\frac{\pi}{2}}\cos^nx\,dx=\frac{n-1}{n}I_{n-2} In​=∫02π​​sinnxdx=∫02π​​cosnxdx=nn−1​In−2​
证明:
I n =   − ∫ 0 π 2 sin ⁡ n − 1 x   d cos ⁡ x =   − ( sin ⁡ n − 1 x cos ⁡ x ) ∣ 0 π 2 + ( n − 1 ) ∫ 0 π 2 cos ⁡ 2 x sin ⁡ n − 2 x   d x =   0 + ( n − 1 ) ∫ 0 π 2 ( 1 − sin ⁡ 2 x ) sin ⁡ n − 2 x   d x =   ( n − 1 ) ∫ 0 π 2 sin ⁡ n − 2 x   d x − ( n − 1 ) ∫ 0 π 2 sin ⁡ n x   d x =   ( n − 1 ) I n − 2 − ( n − 1 ) I n ∴ I n =   n − 1 n I n − 2 . \begin{aligned} I_n=&\ -\int_0^{\frac\pi2}\sin^{n-1}x\,d\cos x \\ =&\ -(\sin^{n-1}x\cos x)\bigg|_0^{\frac\pi2}+(n-1)\int_0^{\frac\pi2}\cos^2x\sin^{n-2}x\,dx \\ =&\ 0+(n-1)\int_0^{\frac\pi2}(1-\sin^2x)\sin^{n-2}x\,dx \\ =&\ (n-1)\int_0^{\frac\pi2}\sin^{n-2}x\,dx-(n-1)\int_0^{\frac\pi2}\sin^{n}x\,dx \\ =&\ (n-1)I_{n-2}-(n-1)I_n \\ \\ \therefore I_n=&\ \frac{n-1}{n}I_{n-2}. \end{aligned} In​=====∴In​=​ −∫02π​​sinn−1xdcosx −(sinn−1xcosx)∣∣∣∣​02π​​+(n−1)∫02π​​cos2xsinn−2xdx 0+(n−1)∫02π​​(1−sin2x)sinn−2xdx (n−1)∫02π​​sinn−2xdx−(n−1)∫02π​​sinnxdx (n−1)In−2​−(n−1)In​ nn−1​In−2​.​

Wallis公式推论:
I 2 n = 2 n − 1 2 n ⋅ 2 n − 3 2 n − 2 ⋅ . . . ⋅ 3 4 ⋅ 1 2 ⋅ π 2 = ( 2 n − 1 ) ! ! ( 2 n ) ! ! ⋅ π 2 I_{2n}=\frac{2n-1}{2n}\cdot\frac{2n-3}{2n-2}\cdot...\cdot\frac34\cdot\frac12\cdot\frac\pi2=\frac{(2n-1)!!}{(2n)!!}\cdot\frac\pi2 I2n​=2n2n−1​⋅2n−22n−3​⋅...⋅43​⋅21​⋅2π​=(2n)!!(2n−1)!!​⋅2π​

I 2 n + 1 = 2 n 2 n + 1 ⋅ 2 n − 2 2 n − 1 ⋅ . . . ⋅ 4 5 ⋅ 2 3 ⋅ 1 = ( 2 n ) ! ! ( 2 n + 1 ) ! ! I_{2n+1}=\frac{2n}{2n+1}\cdot\frac{2n-2}{2n-1}\cdot...\cdot\frac45\cdot\frac23\cdot1=\frac{(2n)!!}{(2n+1)!!} I2n+1​=2n+12n​⋅2n−12n−2​⋅...⋅54​⋅32​⋅1=(2n+1)!!(2n)!!​

例 36. ∫ 0 a x 4 a 2 − x 2   d x \displaystyle\int_0^ax^4\sqrt{a^2-x^2}\,dx ∫0a​x4a2−x2 ​dx

设 x = a sin ⁡ t x=a\sin t x=asint ,则 d x = a cos ⁡ t   d t dx=a\cos t\,dt dx=acostdt
I =   ∫ 0 π 2 a 4 sin ⁡ 4 t ⋅ a cos ⁡ t ⋅ a cos ⁡ t   d t =   a 6 ∫ 0 π 2 sin ⁡ 4 t ( 1 − sin ⁡ 2 t )   d t =   a 6 ( I 4 − I 6 ) =   a 6 ( 3 4 ⋅ 1 2 ⋅ π 2 − 5 6 ⋅ 3 4 ⋅ 1 2 ⋅ π 2 ) =   π 32 a 6 \begin{aligned} I=&\ \int_0^{\frac\pi2}a^4\sin^4t\cdot a\cos t\cdot a\cos t\,dt \\ =&\ a^6\int_0^{\frac\pi2}\sin^4t(1-\sin^2t)\,dt \\ =&\ a^6(I_4-I_6) \\ =&\ a^6\left(\frac34\cdot\frac12\cdot\frac\pi2-\frac56\cdot\frac34\cdot\frac12\cdot\frac\pi2\right) \\ =&\ \frac\pi{32}a^6 \end{aligned} I=====​ ∫02π​​a4sin4t⋅acost⋅acostdt a6∫02π​​sin4t(1−sin2t)dt a6(I4​−I6​) a6(43​⋅21​⋅2π​−65​⋅43​⋅21​⋅2π​) 32π​a6​

6. 变上限积分函数与定积分不等式

例 37. 设 f ( x ) = ∫ 0 1 − x e t ( 2 − t )   d t f(x)=\displaystyle\int_0^{1-x}e^{t(2-t)}\,dt f(x)=∫01−x​et(2−t)dt , 求 ∫ 0 1 f ( x )   d x \displaystyle\int_0^1f(x)\,dx ∫01​f(x)dx

(1) 求导
f ′ ( x ) = − e ( 1 − x ) ( 1 + x ) f'(x)=-e^{(1-x)(1+x)} f′(x)=−e(1−x)(1+x)
(2) 积分
∫ 0 1 f ( x )   d x =   x ⋅ f ( x ) ∣ 0 1 − ∫ 0 1 x f ′ ( x )   d x =   0 + ∫ 0 1 x ⋅ e 1 − x 2   d x =   − 1 2 ∫ 0 1 e 1 − x 2   d ( 1 − x 2 ) =   − 1 2 e 1 − x 2 ∣ 0 1 =   1 2 ( e − 1 ) \begin{aligned} \int_0^1f(x)\,dx=&\ x\cdot f(x)\bigg|_0^1-\int_0^1xf'(x)\,dx \\ =&\ 0+\int_0^1x\cdot e^{1-x^2}\,dx \\ =&\ -\frac12\int_0^1e^{1-x^2}\,d(1-x^2) \\ =&\ -\frac12e^{1-x^2}\bigg|_0^1 \\ =&\ \frac12(e-1) \end{aligned} ∫01​f(x)dx=====​ x⋅f(x)∣∣∣∣​01​−∫01​xf′(x)dx 0+∫01​x⋅e1−x2dx −21​∫01​e1−x2d(1−x2) −21​e1−x2∣∣∣∣​01​ 21​(e−1)​

例 38. 设 f ( x ) = ∫ 1 x d t 1 + t 3 f(x)=\displaystyle\int_1^x\frac{dt}{\sqrt{1+t^3}} f(x)=∫1x​1+t3 ​dt​ ,求 ∫ 0 1 x f ( x )   d x \displaystyle\int_0^1xf(x)\,dx ∫01​xf(x)dx

(1) 求导
f ′ ( x ) = 1 1 + x 3 f'(x)=\frac{1}{\sqrt{1+x^3}} f′(x)=1+x3 ​1​
(2) 积分
∫ 0 1 x f ( x )   d x =   1 2 ∫ 0 1 f ( x )   d ( x 2 ) =   1 2 x 2 f ( x ) ∣ 0 1 − 1 2 ∫ 0 1 x 2 f ′ ( x )   d x =   0 − 1 2 ∫ 0 1 x 2 ⋅ 1 1 + x 3   d x =   − 1 6 ∫ 0 1 d ( 1 + x 3 ) 1 + x 3 =   − 1 3 1 + x 3 ∣ 0 1 =   1 − 2 3 \begin{aligned} \int_0^1xf(x)\,dx =&\ \frac12\int_0^1f(x)\,d(x^2) \\ =&\ \frac12x^2f(x)\bigg|_0^1-\frac12\int_0^1x^2f'(x)\,dx \\ =&\ 0-\frac12\int_0^1x^2\cdot\frac{1}{\sqrt{1+x^3}}\,dx \\ =&\ -\frac16\int_0^1\frac{d(1+x^3)}{\sqrt{1+x^3}} \\ =&\ -\frac13\sqrt{1+x^3}\bigg|_0^1 \\ =&\ \frac{1-\sqrt{2}}3 \end{aligned} ∫01​xf(x)dx======​ 21​∫01​f(x)d(x2) 21​x2f(x)∣∣∣∣​01​−21​∫01​x2f′(x)dx 0−21​∫01​x2⋅1+x3 ​1​dx −61​∫01​1+x3 ​d(1+x3)​ −31​1+x3 ​∣∣∣∣​01​ 31−2 ​​​

标签:frac,int,积分,不定积分,ln,与定,dx,aligned,displaystyle
来源: https://blog.csdn.net/weixin_45449414/article/details/111826341