图像数据增强(Data Augmentation)( 旋转)
作者:互联网
首先是XML信息
<annotation> <folder>well</folder> <filename>15278480618780.jpg</filename> <path>15278480618780.jpg</path> <size> <width>828</width> <height>1104</height> <depth>3</depth> </size> <segmented>0</segmented> <object> <name>3</name> <pose>Unspecified</pose> <truncated>1</truncated> <difficult>0</difficult> <bndbox> <xmin>250</xmin> <ymin>672</ymin> <xmax>531</xmax> <ymax>1104</ymax> </bndbox> </object> </annotation>
处理方式:
- 读取对应的图像,解析对应的xml,根据旋转的角度来变换之前检测到的坐标,以及保存变换后的图像。
#!/usr/bin/env python import cv2 import math import numpy as np import os import pdb import xml.etree.ElementTree as ET class ImgAugemention(): def __init__(self): self.angle = 90 # rotate_img def rotate_image(self, src, angle, scale=1.): w = src.shape[1] h = src.shape[0] # convet angle into rad rangle = np.deg2rad(angle) # angle in radians # calculate new image width and height nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale # ask OpenCV for the rotation matrix rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale) # calculate the move from the old center to the new center combined # with the rotation rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5, 0])) # the move only affects the translation, so update the translation # part of the transform rot_mat[0, 2] += rot_move[0] rot_mat[1, 2] += rot_move[1] # map return cv2.warpAffine( src, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4) def rotate_xml(self, src, xmin, ymin, xmax, ymax, angle, scale=1.): w = src.shape[1] h = src.shape[0] rangle = np.deg2rad(angle) # angle in radians # now calculate new image width and height # get width and heigh of changed image nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale # ask OpenCV for the rotation matrix rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale) # calculate the move from the old center to the new center combined # with the rotation rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5, 0])) # the move only affects the translation, so update the translation # part of the transform rot_mat[0, 2] += rot_move[0] rot_mat[1, 2] += rot_move[1] # rot_mat: the final rot matrix # get the four center of edges in the initial martix,and convert the coord point1 = np.dot(rot_mat, np.array([(xmin+xmax)/2, ymin, 1])) point2 = np.dot(rot_mat, np.array([xmax, (ymin+ymax)/2, 1])) point3 = np.dot(rot_mat, np.array([(xmin+xmax)/2, ymax, 1])) point4 = np.dot(rot_mat, np.array([xmin, (ymin+ymax)/2, 1])) # concat np.array concat = np.vstack((point1, point2, point3, point4)) # change type concat = concat.astype(np.int32) print(concat) rx, ry, rw, rh = cv2.boundingRect(concat) return rx, ry, rw, rh def process_img(self, imgs_path, xmls_path, img_save_path, xml_save_path, angle_list): # assign the rot angles for angle in angle_list: for img_name in os.listdir(imgs_path): # split filename and suffix n, s = os.path.splitext(img_name) # for the sake of use yolo model, only process '.jpg' if s == ".jpg": img_path = os.path.join(imgs_path, img_name) img = cv2.imread(img_path) rotated_img = self.rotate_image(img, angle) save_name = n + "_" + str(angle) + "d.jpg" # 写入图像 cv2.imwrite(img_save_path + save_name, rotated_img) print("log: [%sd] %s is processed." % (angle, img)) xml_url = img_name.split('.')[0] + '.xml' xml_path = os.path.join(xmls_path, xml_url) tree = ET.parse(xml_path) file_name = tree.find('filename').text # it is origin name path = tree.find('path').text # it is origin path # change name and path tree.find('filename').text = save_name # change file name to rot degree name tree.find('path').text = save_name # change file path to rot degree name root = tree.getroot() for box in root.iter('bndbox'): xmin = float(box.find('xmin').text) ymin = float(box.find('ymin').text) xmax = float(box.find('xmax').text) ymax = float(box.find('ymax').text) x, y, w, h = self.rotate_xml(img, xmin, ymin, xmax, ymax, angle) # change the coord box.find('xmin').text = str(x) box.find('ymin').text = str(y) box.find('xmax').text = str(x+w) box.find('ymax').text = str(y+h) box.set('updated', 'yes') # write into new xml tree.write(xml_save_path + n + "_" + str(angle) + "d.xml") print("[%s] %s is processed." % (angle, img_name)) if __name__ == '__main__': img_aug = ImgAugemention() imgs_path = './image/' xmls_path = './xml/' img_save_path = './rotate/' xml_save_path = './xml_rot/' angle_list = [60, 90, 120, 150, 210, 240, 300] img_aug.process_img(imgs_path, xmls_path, img_save_path, xml_save_path, angle_list)
处理结果:
<annotation> <folder>well</folder> <filename>15278480618780_60d.jpg</filename> <path>15278480618780_60d.jpg</path> <size> <width>828</width> <height>1104</height> <depth>3</depth> </size> <segmented>0</segmented> <object> <name>3</name> <pose>Unspecified</pose> <truncated>1</truncated> <difficult>0</difficult> <bndbox updated="yes"> <xmin>777</xmin> <ymin>701</ymin> <xmax>1152</xmax> <ymax>945</ymax> </bndbox> </object> </annotation>
标签:xml,angle,img,rot,Augmentation,图像,np,path,Data 来源: https://www.cnblogs.com/zhangly2020/p/14193936.html