CF1425D 容斥 组合数 快速幂求逆元
作者:互联网
上图来源于标程解析 CF
1 #include<iostream> 2 #include<algorithm> 3 #include<cstdio> 4 #include<vector> 5 #define ll long long 6 #define fir first 7 #define sec second 8 using namespace std; 9 typedef pair<int, int> pii; 10 const int N = 2e3 + 10; 11 const int mod = 1e9 + 7; 12 ll n, m, r; 13 ll b[N]; 14 15 ll sum[N][N];//与原点包围的面积内蛇的个数 16 17 ll max(ll a, ll b) 18 { 19 if(a > b) return a; 20 return b; 21 } 22 23 ll min(ll a, ll b) 24 { 25 if(a > b) return b; 26 return a; 27 } 28 29 ll quick_pow(ll base, ll k) 30 { 31 ll res = 1; 32 while(k) 33 { 34 if(k & 1){ 35 res *= base % mod; 36 res %= mod; 37 } 38 base *= base; 39 base %= mod; 40 k >>= 1; 41 } 42 return res % mod; 43 } 44 45 ll inv[N << 1]; 46 ll f[N << 1]; 47 48 void pre()//预处理 49 { 50 f[0] = inv[0] = 1; 51 for(ll i = 1 ; i < N * 2 ; i++){ 52 f[i] = 1ll * f[i - 1] * i % mod;//阶乘 53 inv[i] = quick_pow(i, mod - 2) % mod * inv[i - 1] % mod;//求阶乘的逆元 54 } 55 } 56 57 ll getsum2(int x1, int y1, int x2, int y2) 58 { 59 x1 = max(1, x1); 60 y1 = max(1, y1); 61 x2 = min(1000, x2); 62 y2 = min(1000, y2); 63 if(x1 > x2 || y2 < y1) return 0; 64 ll tmp = sum[x2][y2] - sum[x1 - 1][y2] - sum[x2][y1 - 1] + sum[x1 - 1][y1 - 1]; 65 return tmp; 66 } 67 68 ll getsum1(int x1, int y1, int r) 69 { 70 return getsum2(x1 - r, y1 - r, x1 + r, y1 + r); 71 } 72 73 ll comb(ll n, ll m) 74 { 75 if(m > n || m < 0) return 0; 76 return f[n] % mod * inv[n - m] % mod * inv[m] % mod; 77 } 78 79 int main(){ 80 pre(); 81 scanf("%lld%lld%lld",&n,&m,&r); 82 vector<pii> snakes; 83 84 for(int i = 0 ; i < n ; i++){ 85 int x, y; 86 scanf("%d%d%lld",&x,&y,&b[i]); 87 sum[x][y]++; 88 snakes.push_back(make_pair(x, y)); 89 } 90 91 for(int i = 1 ; i < N ; i++){ 92 for(int j = 1 ; j < N ; j++){ 93 sum[i][j] += sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1];//容斥 94 } 95 } 96 97 ll res = 0; 98 int sz = (int)snakes.size(); 99 for(int i = 0 ; i < sz ; i++){ 100 for(int j = i ; j < sz ; j++){// 101 int x1 = snakes[i].fir; 102 int y1 = snakes[i].sec; 103 int x2 = snakes[j].fir; 104 int y2 = snakes[j].sec; 105 106 int X1 = max(x1 - r, x2 - r); 107 int Y1 = max(y1 - r, y2 - r); 108 int X2 = min(x1 + r, x2 + r); 109 int Y2 = min(y1 + r, y2 + r); 110 111 ll w = getsum2(X1, Y1, X2, Y2);//i死j死 112 ll u = getsum1(x1, y1, r) - w;//i死j不死 113 ll v = getsum1(x2, y2, r) - w;//i不死j死 114 115 ll tmp = 0; 116 tmp += comb(n, m) - comb(n - w, m);// 117 if(tmp < 0) tmp += mod; 118 119 tmp += comb(n - w, m) - comb(n - u - w, m) - comb(n - v - w, m) + comb(n - u - v - w, m);// 120 tmp %= mod; 121 if(tmp < 0){ 122 tmp += mod; 123 } 124 125 if(i == j){ 126 res += tmp * b[i] % mod * b[j] % mod; 127 }else{ 128 res += (2ll * tmp % mod * b[i] % mod * b[j] % mod) % mod; 129 } 130 res %= mod; 131 } 132 } 133 printf("%lld\n",res % mod); 134 135 return 0; 136 }
最后的选取部分还没理解透彻
1.在w范围内出现的情况
2.不在w内出现,且两点均在u,v范围内出现的情况
标签:tmp,return,幂求,int,CF1425D,容斥,y1,ll,mod 来源: https://www.cnblogs.com/ecustlegendn324/p/13835015.html