劲爆!CRISPR比早期ABEs快1100倍!道翰天琼认知智能机器人平台API接口大脑为您揭秘。
作者:互联网
劲爆!CRISPR比早期ABEs快1100倍!道翰天琼认知智能机器人平台API接口大脑为您揭秘。
近日,CRISPR 基因编辑奠基人 Jennifer Doudna 在 Science 杂志发表了题为 DNA capture by a CRISPR-Cas9–guided adenine base editor 的论文,首次解析了单碱基编辑器 ABE8e 的超高分辨率冷冻电镜结构,揭示了 ABE8e 如何实现 DNA 上的快速脱氨,为单碱基编辑技术的改进和安全应用提供了一条新的思路。CRISPR/Cas 系统可以说是目前生物学界的“明星产品”。早在 30 年前,九州大学生物科学和生命技术部的 Yoshizumi Ishino 教授首次发现 CRISPR,但当时它的生物学功能还没有被人们所认识。
CRISPR 基因编辑器的早期发展史
2000 年初,阿利坎特大学免疫和生理部的 Francisco J M Mojica 教授带领的小组发现了 CRISPR 的间隔区与细菌病毒、古菌病毒和质粒的序列相似性,终于揭示了 CRISPR 作为免疫系统的功能。并于 2005 年由三个研究小组独立发表在刊物上。与此同时,他们还发现早前一些编码极端嗜热古菌特有 DNA 修复蛋白的基因与 CRISPR 有着强烈关联性,并将其命名为 cas (CRISPR-associated)基因。在当时,该发现的重要性显然为世人所低估。
比较基因组分析表明,CRISPR 和 Cas 蛋白 (cas 基因产物) 实际上是一起工作的,共同构成了一个获得性免疫系统,以保护原核细胞抵御入侵的病毒和质粒,类似于真核生物的 RNA 干扰 (RNAi) 系统 。因此,研究人员开始意识到,这可能成为一个非常强大的工具。
腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T)是 DNA 的基本构成单元,按照 A-T、C-G 的配对形式搭建起了 DNA 的双螺旋结构。CRISPR-Cas9 碱基编辑器由 RNA 引导的 Cas 蛋白与一种脱氨酶融合而成。没有任何天然的酶让 DNA 中的腺嘌呤脱氨,因此,当天然的转移 RNA 脱氨酶融合到 Cas9 上,并进化出一种腺嘌呤碱基编辑器(ABE)时,基因编辑界就实现了全新的突破。
将基因组 DNA 中的 A-T 碱基对转换为 G-C 碱基对,将 C-G 碱基对转换为 T-A 碱基对,有望纠正人类约 60% 已知致病性单碱基变异。这种转换可以通过 CRISPR-Cas9 碱基编辑器,RNA 引导的 Cas 蛋白与单链 DNA(ssDNA)脱氨酶融合来实现。DNA 中的 A-T 到 G-C 转换需要将腺苷脱氨为肌苷,而肌苷被细胞机制识别为鸟苷(图 1,A 和 B)。在 DNA 没有脱氨基酶的情况下,大肠杆菌 tRNA 腺苷脱氨酶(TadA)与 Cas9 融合,并进化成 ABE7.10,它能催化脱氧腺苷的靶向脱氨 。
ABE7.10 编码两个 TadA 的副本,一个 N 端野生型(WT)TadA 连接到进化的 TadA(TadA-7.10),它的 C 端连接到一个 "缺口酶"[即切割双链 DNA(dsDNA)的一条链]版本的嗜热链球菌 Cas9(nSpCas9)(图 1C)。此后,ABE7.10 作为一种工具被广泛应用于许多细胞类型和生物体的基因组 DNA 的脱氨。研究人员还发现 ABE7.10 变体在细胞中催化非靶向 RNA 编辑,这种活性通过 TadA-7.10 域的突变或去除 N 端 WT TadA 域而降低,生成一个截短版的 miniABEmax(图 1.C)。
然而,无论是 ABE7.10 还是 miniABEmax,早期的腺嘌呤碱基编辑器(ABE)效率都很低,运行也缓慢。待 ABE7.10 进一步发展以后,诞生了 ABE8e,它能编码单个 TadA 域(TadA-8e),并与 8 个测试的 Cas 效应器广泛兼容(图 1.C)。
ABE8e 究竟强在哪里?
为了了解腺嘌呤碱基编辑器(ABEs)DNA 腺嘌呤脱氨的分子基础,亚利桑那州大学助理教授 Lapinaite 等人利用冷冻电子显微镜成像技术,以 3.2A 分辨率解析了 ABE8e 结合 DNA 时的 3D 结构,其中用于捕获催化构象的模拟物取代了目标腺嘌呤。这是人类首次观察到正在工作中的单碱基编辑器,也首次了解到融合后的 ABE 编辑器实际上仍然分相对独立的两个模块在工作,这让我们看清了 Cas9 融合蛋白的融合模式。
研究人员观察到,脱氨酶与 CRISPR/Cas9 R - 环复合物内暴露的 DNA 结合。动力学和结构数据表明,ABE8e 催化 DNA 脱氨的速度比早期的 ABEs 快约 1100 倍,因为突变使 DNA 底物稳定在一个受限的、类似转移 RNA 的构象中。此外,ABE8e 加速的 DNA 脱氨表明,在 CRISPR/Cas9 监控双链 DNA 的过程中,可能会发生以前未观察到的瞬时 DNA 融化。
ABE8e 的快速多转位反式 ssDNA 脱氨动力学研究显示,ssDNA 中的任何腺苷,包括那些被 Cas9 短暂暴露在溶剂中的腺苷,都可能被 TadA-8e 脱氨。为了探究这个想法,研究人员使用 dsDNA,其中 NTS 含有多个腺嘌呤,比较了 ABE7.10、miniABEmax 和 ABE8e 的体外编辑特性(图 2E),发现 ABE7.10 和 miniABEmax 主要是对单个 PAM - 端腺嘌呤进行脱氨,ABE8e 则是对多个腺嘌呤进行脱氨,包括存在于 R 环双链区域内的腺嘌呤
道翰天琼认知智能未来机器人接口API简介介绍
- 认知智能是计算机科学的一个分支科学,是智能科学发展的高级阶段,它以人类认知体系为基础,以模仿人类核心能力为目标,以信息的理解、存储、应用为研究方向,以感知信息的深度理解和自然语言信息的深度理解为突破口,以跨学科理论体系为指导,从而形成的新一代理论、技术及应用系统的技术科学。 认知智能的核心研究范畴包括:1.宇宙、信息、大脑三者关系;2.人类大脑结构、功能、机制;3.哲学体系、文科体系、理科体系;4.认知融通、智慧融通、双脑(人脑和电脑)融通等核心体系。 认知智能四步走:1.认知宇宙世界。支撑理论体系有三体(宇宙、信息、大脑)论、易道论、存在论、本体论、认知论、融智学、HNC 等理论体系;2.清楚人脑结构、功能、机制。支撑学科有脑科学、心理学、逻辑学、情感学、生物学、化学等学科。3.清楚信息内涵规律规则。支撑学科有符号学、语言学、认知语言学、形式语言学等学科。4.系统落地能力。支撑学科有计算机科学、数学等学科。
认知智能CI机器人是杭州道翰天琼智能科技有限公司旗下产品。认知智能机器人是依托道翰天琼10年研发的认知智能CI体系为核心而打造的认知智能机器人大脑,是全球第一个认知智能机器人大脑。具有突破性,创新性,领航性。是新一代智能认知智能的最好的产品支撑。 认知智能机器人技术体系更加先进,更加智能,是新一代智能,认知智能领域世界范围内唯一的认知智能机器人。 认知智能机器人是新时代的产物,是新一代智能认知智能的产物。代表了新一代智能认知智能最核心的优势。和人工智能机器人大脑相比,优势非常明显。智能度高,客户粘性大,客户满意度高,易于推广和传播等核心特点。 依托认知智能机器人平台提供的机器人大脑服务,可以赋能各个行业,各个领域的智能设备,各类需要人机互动的领域等。认知智能机器人平台网址:www.weilaitec.com,www.citec.top。欢迎注册使用,走进更智能机器人世界。
认知智能和人工智能的优劣势对比主要可以分为四大方面: 第一:时代发展不同。人工智能是智能时代发展的第二个阶段,认知智能是智能时代发展的第三个阶段。时代发展上决定了认知智能更显具有时代领先性。 第二:基础理论体系不同。人工智能的基础理论体系以数学为基础,以统计概率体系为基础。认知智能基础理论体系以交叉许可理论体系为基础。包含古今中外哲学体系,心理学体系,逻辑学体系,语言学体系,符号学体系,数学体系等学科。其基础理论体系更加具有创新性,突破性和领先性。且交叉学科理论体系的研究也是未来智能发展的大方向。其具体理论体系,还包含三体论(宇宙,信息,大脑三者关系),融智学,和HNC等。 第三:技术体系不同。人工智能的核心技术体系主要是算法,机器学习,深度学习,知识图谱等。其主要功用在感知智能。感知智能其核心主要是在模仿人类的感知能力。认知智能的核心技术体系是以交叉学科理论体系而衍生出来的。具体包含三大核心技术体系,认知维度,类脑模型和万维图谱。认知智能的技术体系核心以类脑的认知体系为基础。以全方位模仿类脑能力为目标。人工智能以感知智能为基础的体系,只能作为认知智能中的类脑模型技术体系中的感知层技术体系。类脑模型大致包含,感知层,记忆层,学习层,理解层,认知层,逻辑层,情感层,沟通层,意识层等9大核心技术层。因此人工智能的核心只是作为认知智能类脑模型中的感知层。因此在技术体系上,人工智能和认知智能基本上没有太多的可比性。 第四:智能度成本等方面的不同:人工智能产品的综合智能程度,普遍在2-3岁左右的智力水平。认知智能产品其智能程度大致在5-8岁左右。认知智能体系构建的机器人更加智能。且更省时间,更省人力和资金。优势非常多。具体请看下列的逐项对比。
道翰天琼CiGril机器人API
道翰天琼CiGril认知智能机器人API用户需要按步骤获取基本信息:
- 在平台注册账号
- 登录平台,进入后台管理页面,创建应用,然后查看应用,查看应用相关信息。
- 在应用信息页面,找到appid,appkey秘钥等信息,然后写接口代码接入机器人应用。
开始接入
请求地址:http://www.weilaitec.com/cigirlrobot.cgr
请求方式:post
请求参数:
参数 |
类型 |
默认值 |
描述 |
userid |
String |
无 |
平台注册账号 |
appid |
String |
无 |
平台创建的应用id |
key |
String |
无 |
平台应用生成的秘钥 |
msg |
String |
"" |
用户端消息内容 |
ip |
String |
"" |
客户端ip要求唯一性,无ip等可以用QQ账号,微信账号,手机MAC地址等代替。 |
接口连接示例:http://www.weilaitec.com/cigirlrobot.cgr?key=UTNJK34THXK010T566ZI39VES50BLRBE8R66H5R3FOAO84J3BV&msg=你好&ip=119.25.36.48&userid=jackli&appid=52454214552
注意事项:参数名称都要小写,五个参数不能遗漏,参数名称都要写对,且各个参数的值不能为空字符串。否则无法请求成功。userid,appid,key三个参数要到平台注册登录创建应用之后,然后查看应用详情就可以看到。userid就是平台注册账号。
示例代码JAVA:
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.HttpURLConnection;
import java.net.URL;
public class apitest {
/**
* Get请求,获得返回数据
* @param urlStr
* @return
*/
private static String opUrl(String urlStr)
{
URL url = null;
HttpURLConnection conn = null;
InputStream is = null;
ByteArrayOutputStream baos = null;
try
{
url = new URL(urlStr);
conn = (HttpURLConnection) url.openConnection();
conn.setReadTimeout(5 * 10000);
conn.setConnectTimeout(5 * 10000);
conn.setRequestMethod("POST");
if (conn.getResponseCode() == 200)
{
is = conn.getInputStream();
baos = new ByteArrayOutputStream();
int len = -1;
byte[] buf = new byte[128];
while ((len = is.read(buf)) != -1)
{
baos.write(buf, 0, len);
}
baos.flush();
String result = baos.toString();
return result;
} else
{
throw new Exception("服务器连接错误!");
}
} catch (Exception e)
{
e.printStackTrace();
} finally
{
try
{
if (is != null)
is.close();
} catch (IOException e)
{
e.printStackTrace();
}
try
{
if (baos != null)
baos.close();
} catch (IOException e)
{
e.printStackTrace();
}
conn.disconnect();
}
return "";
}
public static void main(String args []){
//msg参数就是传输过去的对话内容。
System.out.println(opUrl("http://www.weilaitec.com/cigirlrobot.cgr?key=UTNJK34THXK010T566ZI39VES50BLRBE8R66H5R3FOAO84J3BV&msg=你好&ip=119.25.36.48&userid=jackli&appid=52454214552"));
}
}
标签:道翰,DNA,天琼,认知,机器人,智能,API,CRISPR,脱氨 来源: https://www.cnblogs.com/weilaici/p/13492921.html