分布式中ID的常用解决方案
作者:互联网
在复杂的系统中,往往需要对大量的数据如订单,账户进行标识,以一个有意义的有序的序列号来作为全局唯一的ID;而分布式系统中我们对ID生成器要求又有哪些呢?
全局唯一性:不能出现重复的ID号,既然是唯一标识,这是最基本的要求。
递增:比较低要求的条件为趋势递增,即保证下一个ID一定大于上一个ID,而比较苛刻的要求是连续递增,如1,2,3等等。
高可用高性能:ID生成事关重大,一旦挂掉系统崩溃;高性能是指必须要在压测下表现良好,如果达不到要求则在高并发环境下依然会导致系统瘫痪。
信息安全:如果ID是连续的,恶意用户的扒取工作就非常容易做了,直接按照顺序下载指定URL即可;如果是订单号就更危险了,竞对可以直接知道我们一天的单量。所以在一些应用场景下,会需要ID无规则、不规则。
常见企业级解决方案
UUID
优点:
能够保证独立性,程序可以在不同的数据库间迁移,效果不受影响。
保证生成的ID不仅是表独立的,而且是库独立的,这点在你想切分数据库的时候尤为重要。
缺点:
性能为题:UUID太长,通常以36长度的字符串表示,对MySQL索引不利:如果作为数据库主键,在InnoDB引擎下,UUID的无序性可能会引起数据位置频繁变动,严重影响性能
UUID无业务含义:很多需要ID能标识业务含义的地方不使用
不满足递增要求
信息不安全:基于MAC地址生成UUID的算法可能会造成MAC地址泄露,这个漏洞曾被用于寻找梅丽莎病毒的制作者位置。
不易于存储:UUID太长,16字节128位,通常以36长度的字符串表示,很多场景不适用。
基于数据库方案
利用数据库生成ID是最常见的方案。能够确保ID全数据库唯一。其优缺点如下:
优点:
非常简单,利用现有数据库系统的功能实现,成本小,有DBA专业维护。
ID号单调自增,可以实现一些对ID有特殊要求的业务。
缺点:
不同数据库语法和实现不同,数据库迁移的时候或多数据库版本支持的时候需要处理。
在单个数据库或读写分离或一主多从的情况下,只有一个主库可以生成。
有单点故障的风险。 在性能达不到要求的情况下,比较难于扩展。
如果涉及多个系统需要合并或者数据迁移会比较麻烦。
分表分库的时候会有麻烦。
雪花算法
SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:
大致由:首位无效符、时间戳差值,机器(进程)编码,序列号四部分组成。
-
1bit,不用,因为二进制中最高位是符号位,1表示负数,0表示正数。生成的id一般都是用整数,所以最高位固定为0。
-
41bit-时间戳,用来记录时间戳,毫秒级。
- 41位可以表示个数字,
- 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 ,减1是因为可表示的数值范围是从0开始算的,而不是1。
- 也就是说41位可以表示个毫秒的值,转化成单位年则是年 -
10bit-工作机器id,用来记录工作机器id。
- 可以部署在个节点,包括5位datacenterId和5位workerId
- 5位(bit)可以表示的最大正整数是,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId -
12bit-序列号,序列号,用来记录同毫秒内产生的不同id。
- 12位(bit)可以表示的最大正整数是,即可以用0、1、2、3、....4094这4095个数字,来表示同一机器同一时间截(毫秒)内产生的4095个ID序号。
由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的。
特点(自增、有序、适合分布式场景)
- 时间位:可以根据时间进行排序,有助于提高查询速度。
- 机器id位:适用于分布式环境下对多节点的各个节点进行标识,可以具体根据节点数和部署情况设计划分机器位10位长度,如划分5位表示进程位等。
- 序列号位:是一系列的自增id,可以支持同一节点同一毫秒生成多个ID序号,12位的计数序列号支持每个节点每毫秒产生4096个ID序号
public class IdWorker{ //下面两个每个5位,加起来就是10位的工作机器id private long workerId; //工作id private long datacenterId; //数据id //12位的序列号 private long sequence; public IdWorker(long workerId, long datacenterId, long sequence){ // sanity check for workerId if (workerId > maxWorkerId || workerId < 0) { throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId)); } if (datacenterId > maxDatacenterId || datacenterId < 0) { throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId)); } System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d", timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId); this.workerId = workerId; this.datacenterId = datacenterId; this.sequence = sequence; } //初始时间戳 private long twepoch = 1288834974657L; //长度为5位 private long workerIdBits = 5L; private long datacenterIdBits = 5L; //最大值 private long maxWorkerId = -1L ^ (-1L << workerIdBits); private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); //序列号id长度 private long sequenceBits = 12L; //序列号最大值 private long sequenceMask = -1L ^ (-1L << sequenceBits); //工作id需要左移的位数,12位 private long workerIdShift = sequenceBits; //数据id需要左移位数 12+5=17位 private long datacenterIdShift = sequenceBits + workerIdBits; //时间戳需要左移位数 12+5+5=22位 private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; //上次时间戳,初始值为负数 private long lastTimestamp = -1L; public long getWorkerId(){ return workerId; } public long getDatacenterId(){ return datacenterId; } public long getTimestamp(){ return System.currentTimeMillis(); } //下一个ID生成算法 public synchronized long nextId() { long timestamp = timeGen(); //获取当前时间戳如果小于上次时间戳,则表示时间戳获取出现异常 if (timestamp < lastTimestamp) { System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp); throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp)); } //获取当前时间戳如果等于上次时间戳(同一毫秒内),则在序列号加一;否则序列号赋值为0,从0开始。 if (lastTimestamp == timestamp) { sequence = (sequence + 1) & sequenceMask; if (sequence == 0) { timestamp = tilNextMillis(lastTimestamp); } } else { sequence = 0; } //将上次时间戳值刷新 lastTimestamp = timestamp; /** * 返回结果: * (timestamp - twepoch) << timestampLeftShift) 表示将时间戳减去初始时间戳,再左移相应位数 * (datacenterId << datacenterIdShift) 表示将数据id左移相应位数 * (workerId << workerIdShift) 表示将工作id左移相应位数 * | 是按位或运算符,例如:x | y,只有当x,y都为0的时候结果才为0,其它情况结果都为1。 * 因为个部分只有相应位上的值有意义,其它位上都是0,所以将各部分的值进行 | 运算就能得到最终拼接好的id */ return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence; } //获取时间戳,并与上次时间戳比较 private long tilNextMillis(long lastTimestamp) { long timestamp = timeGen(); while (timestamp <= lastTimestamp) { timestamp = timeGen(); } return timestamp; } //获取系统时间戳 private long timeGen(){ return System.currentTimeMillis(); } //---------------测试--------------- public static void main(String[] args) { IdWorker worker = new IdWorker(1,1,1); for (int i = 0; i < 30; i++) { System.out.println(worker.nextId()); } } }
标签:解决方案,数据库,long,ID,workerId,序列号,id,分布式 来源: https://www.cnblogs.com/bao-bei/p/13328127.html